首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
采用单阀双阳离子交换树脂微柱并联 ,设计了双路采样逆向洗脱在线分离富集系统 ,该系统与原子吸收导数测量技术相结合 ,实现了在线分离富集 导数火焰原子吸收光谱法同时测定水中Cr 和Cr ,导数仪用 2mV min档位 ,富集 1min时 ,分析速度为 6 0样 h ,测定Cr 和Cr 的特征浓度分别为 0 .44 8μg L和0 793μg L(相当于 1%导数吸收度 ) ,线性范围分别为 0~ 90和 0~ 180 μg L ;对浓度分别为 10、2 0 μg LCr 和Cr 测定的相对标准偏差分别为 2 .85 %和 2 .85 %;检出限分别为 0 .85 5和 1.71μg L ;该法对实际水样加标回收率在 94.7%~ 10 4%之间。  相似文献   

2.
采用单阀双阳离子交换树脂微柱并联,设计了双路采样逆向洗脱在线分离富集系统,该系统与原子吸收测量技术相结合,实现了在线分离富集-火焰原子吸收光谱法同时测定水中Cr(Ⅲ)和Cr(Ⅵ),富集1min时,分析速度为60样/h,测定Cr(Ⅲ)和Cr(Ⅵ)的特征浓度分别为6.08μg/L和11.58μg/L(相当于1%吸收),线性范围分别为0~1.0μg/mL和0~2.0μg/mL,对质量浓度为100μg/L的Cr(Ⅲ)和Cr(Ⅵ)测定的相对标准偏差分别为2.9%和3.0%、检出限分别为8.70和10.8μg/L。该法对实际水样加标回收率在94.5%~104.3%之间。  相似文献   

3.
建立了固相萃取-液相色谱编程荧光法同时测定水中4-氟苯胺和联苯胺的分析方法。采用Cleanert-PCX阳离子交换固相萃取柱富集水中的4-氟苯胺和联苯胺,用5%氨水-甲醇洗脱,以乙腈-水(内含10 mmol/L的乙酸铵溶液)(20/80,V/V)为流动相,采用液相色谱荧光检测器(4-氟苯胺λex/λem=286 nm/354 nm,联苯胺λex/λem=292 nm/395 nm)分析。4-氟苯胺和联苯胺在2.0~200μg/L和1.0~100μg/L范围内,相关系数均大于0.999,方法检出限分别为0.02μg/L和0.01μg/L。在3个浓度水平加标的平均回收率为75.2%~104%,相对标准偏差在2.1%~7.6%之间。  相似文献   

4.
使用 PT- C18色谱预处理柱 ,以双硫腙为螯合剂 ,甲醇为洗脱剂 ,采用流动注射在线分离富集与原子吸收联用技术 ,对银的测定进行了研究。 1 min富集 ( 4 .2 m L)的富集倍率 2 4 ,检出限为 0 .6 2μg/ L,相对标准偏差为 1 .8% ( n=7)。  相似文献   

5.
研究了阳离子表面活性剂CTMAB对高效液相色谱 -电化学检测法测定水中痕量酚类化合物的增敏、增稳作用。流动相中CTMAB的最佳浓度为 0 .80mmol/L。使用NucleosilC8色谱柱 (2 0 0mm× 4 .6mmi.d .) ,流动相为甲醇 - 0 .0 2 5mol/L邻苯二甲酸氢钾缓冲液 (体积比为 6 0∶4 0 ,pH =5 .0 ,含 0 .0 6mmol/LEDTA、0 .80mmol/LCTMAB)。该方法测定苯酚、4 氯苯酚、2 ,4 二氯苯酚、2 ,4 ,5 三氯苯酚的线性范围分别为 0 .10~ 15 .0 0、0 .15~ 12 .5 0、0 .15~ 2 2 .5 0、0 .30~ 5 0 .0 0 μg/mL ,检出限分别为 0 .0 0 8、0 .0 10、0 .0 16、0 .0 34μg/mL ,测定结果的相对标准偏差分别为 7.0 %、7.2 %、6 .0 %、7.0 % ,回收率分别为 4 8.0 %、80 .0 %、76 .0 %、85 .0 %。  相似文献   

6.
采用单阀双阳离子交换树脂微柱并联,设计了双路采样逆向洗脱在线分离富集系统,该系统与原子吸收导数测量技术相结合,实现了在线分离富集.导数火焰原子吸收光谱法同时测定水中Cr(Ⅲ)和Cr(Ⅵ),导数仪用2mV/min档位,富集lmin时,分析速度为60样/h,测定Cr(Ⅲ)和Cr(Ⅵ)的特征浓度分别为0.448μg/L和0.793μg/L(相当于1%导数吸收度),线性范围分别为0-90和0-180μg/L;对浓度分别为10、20μg/LCr(Ⅲ)和Cr(Ⅵ)测定的相对标准偏差分别为2.85%和2.85%;检出限分别为0.855和1.7lμg/L.该法对实际水样加标回收率在94.7%.104%之间。  相似文献   

7.
范哲锋 《分析化学》2003,31(9):1073-1075
研究了活性氧化铝对Cr(Ⅲ)和Cr(Ⅵ)分离富集的性能,建立了流动注射(FI)-在线微柱分离富集-电感耦合等离子体原子发射光谱(ICP-AES)法测定水中微量Cr(Ⅲ)和Cr(Ⅵ)的分析方法。优化了流动注射测定的条件,进样频率为60/h;检出限(3σ):Cr(Ⅲ)为0.8μg/L,Cr(Ⅵ)为0.6μg/L;线性范围为5-600μg/L;相对标准偏差小于2.4%;回收率为94.0%-102%。  相似文献   

8.
谢发之  张峰君  宣寒  葛业君  王颖 《分析化学》2012,(11):1720-1724
以制备的硫代乙酰胺键合硅胶为微柱填充材料,建立酸性条件(pH 1 0)下流动注射微柱选择性预富集,0.6 mol/L硫脲溶液洗脱,火焰原子吸收测定环境样品中痕量铜的方法。流动注射在线固相萃取的最佳采样流速为8.0 mL/min;最佳洗脱流速为5.0 mL/min,时间为60 s。在优化的条件下,采样体积为10和50 mL时,线性范围分别为2.0~100.0μg/L和0.5~30.0μg/L;检出限(3σ)分别为0.36和0.07μg/L;富集倍数分别为80和170;相对标准偏差分别为(n=9)3.5%和2.0%。研究了环境样品中常见阴阳离子对测定的干扰。应用于灌木枝叶样品(GBW07602)、标准模拟水样(GBW08608)样品和环境样品中铜的分离与富集,取得满意结果。  相似文献   

9.
研究了用 2-(2-喹啉偶氮 )-间苯二酚 (QAR)为柱前衍生试剂 ,以WatersXterraTM RP18(1 .0×5 0mm ,2. 5 μm)微柱为固定相 ,60 %的甲醇 (内含 0 . 5 %的醋酸 )为流动相 ,高效液相色谱分离、二极管矩阵检测器测定铁、钴、镍、铜、锌和锰的方法。根据信噪比 (S N =3 )得各金属离子的检测限分别为 :铁3 μg L、钴 4μg L、镍 2 μg L、铜 4μg L、锌 5 μg L、锰 8μg L ,方法用于环境样品中痕量铁、钴、镍、铜、锌、锰的测定 ,相对标准偏差在 1 . 6%~ 3 . 5 %之间 ,标准回收率为 93 %~ 1 0 7%。  相似文献   

10.
流动注射电化学发光法测定半胱氨酸和谷胱甘肽   总被引:6,自引:0,他引:6  
采用流动注射分析技术研究了半胱氨酸和谷胱甘肽对鲁米诺微弱电化学发光的增敏行为。对影响电化学发光的各因素进行了试验和探讨 ,提出了可能的反应机理 ,并建立一种电化学发光测定半胱氨酸和谷胱甘肽的新方法。半胱氨酸和谷胱甘肽的浓度在 1 .0× 1 0 - 6 mol/L~ 5 .0× 1 0 - 5 mol/L和 1 .0× 1 0 - 6mol/L~ 2 .0× 1 0 - 5 mol/L之间呈良好的线性关系 ,相关系数分别为 0 .993和0 998,检出限分别为 0 .67μmol/L和 0 .72 μmol/L。对 1 .0× 1 0 - 5mol/L的半胱氨酸和谷胱甘肽进行 1 1次平行测定 ,相对标准偏差分别为 4.5 %和 3.7%。  相似文献   

11.
提出了流动注射在线离子交换富集-火焰原子吸收光谱法测定合金钢中微量镍的分析方法.在线离子交换采用双柱正向富集和反向洗脱流路方式,使用80目732强酸型阳离子交换树脂在酸度为0.10mol/L HCl中富集样品中的Ni2+,并用2.0mol/L HCl洗脱.设计了流动注射在线离子交换富集双柱流路的操作程序,优化了各项仪器...  相似文献   

12.
内装活性氧化铝(碱式)和阴离子交换树脂的微型柱流动注射在线富集分离水体中的铬(Ⅲ)和铬(Ⅵ),火焰原子吸收法直接检测。微型住可同时富集两种价态的离子,分别用1mol/L的NH4NO3和HNO3洗脱Cr(Ⅵ)和Cr(Ⅲ)于喷雾器中。进样时间25s,铬(Ⅵ)和铬(Ⅲ)的富集倍数分别为11倍和20倍,实际水样的加标回收率在90%~106%之间;分析速率为50个样/h;铬(Ⅵ)、铬(Ⅲ)的检出限(3δ)分别为1.5μg/L和0.7μg/L;相对标准偏差(50μg/L)分别为1.9%和2.6%。  相似文献   

13.
张召香  何友昭 《分析化学》2005,33(8):1132-1134
提出了离子交换固相萃取的毛细管区带电泳在柱预富集技术。预富集毛细管和分离毛细管的端面靠紧,二者通过一段带侧孔的聚四氟乙烯(PTFE)套管固定。预富集毛细管内壁键合羧基阳离子交换基团,进样时分析离子被保留在预富集管的固定相上,用2mol/L的氯化铵溶液洗脱,再进行毛细管区带电泳分离。方法成功富集和分离了两种低浓度的药物阳离子,普萘洛尔和美托洛尔的灵敏度比常规电动进样分别提高4200和3400倍,其浓度检出限分别为0.02μg/L和0.14μg/L。  相似文献   

14.
用732型强酸性阳离子交换树脂分离富集,并与改进的流动注射(双流路)相结合,建立了新型、高效的流动注射-阳离子交换预富集-ICP-AES在线分析体系。研究了酸度、流速、淋洗剂浓度等的选择、共存离子的干扰情况并应用于矿样的分析。Ca,Mg,Al,Fe各元素的检出限分别为0.9μg/L,0.6μg/L,5.5μg/L,1.4μ/L;10次测量的相对标准偏差分别为3.44%,1.53%,1.60%,2.  相似文献   

15.
建立了电厂水汽中痕量Cl-的自动快速测定方法及系统:流动注射-在线离子交换预富集-分光光度法,确定了该分析系统最优实验条件和性能指标。方法分析速度为2~4样/h,线性回归系数大于0.9995,相对标准偏差小于5.0%,检出限为1.0μg/L。与离子色谱法相比,当水样中Cl~-质量浓度大于10μg/L时,相对误差小于10%;当水样中Cl-浓度小于10μg/L时,相对误差小于20%。  相似文献   

16.
建立了固相萃取净化/超高效液相色谱-串联质谱(SPE/UPLC-MS/MS)同时测定养殖水和沉积物样品中地西泮及其3种代谢物的分析方法。水样经0.45μm玻璃纤维膜过滤,沉积物采用1%氨水-乙酸乙酯提取后,均通过混合型阳离子交换固相萃取(MCX SPE)柱富集净化。目标物用5%氨水-乙腈溶液洗脱后吹干,1 mL 40%乙腈水溶液溶解残渣,UPLC-MS/MS测定。经Phenomenex Kinetex C18(100 mm×2.1 mm,1.7μm)色谱柱分离,乙腈和0.1%甲酸水溶液为流动相进行梯度洗脱。采用电喷雾正离子电离,多反应监测(MRM)模式下测定,内标法定量。4种目标物在0.1~100μg/L范围内的线性关系良好,相关系数(r2)大于0.999。水体和沉积物中的方法检出限分别为1.0~2.0 ng/L和0.02~0.05μg/kg,定量下限分别为2.0~5.0 ng/L和0.05~0.1μg/kg;平均加标回收率为90.2%~115%,相对标准偏差(RSD,n=6)为2.1%~9.6%。该方法灵敏度高,实用性强,可满足养殖环境中地...  相似文献   

17.
本文研究了732强酸性阳离子交换树脂对铜离子的交换条件,并与流动注射(FⅠ)相结合,建立了一种新型高效的在线FⅠ-阳离子交换-氢化物发生-ICP-AES分析体系。本法经离子交换柱可消除高达10mg/ml铜离子的干扰,同时可以使分析速度和灵敏度大大提高。每小时可分析25个样品,砷的检出限为0.9μg/g。  相似文献   

18.
使用填充三正辛胺(TOA)萃淋树脂的微型柱,采用流动注射在线分离富集与火焰子吸收法联用技术,对微量银的测定进行了研究。在1.0mol/L HCl介质中样品流速为8.1mL/min,采样60s,以0.25mol/L HCl-0.5mol/L硫脲洗脱。在30样/h的分析速度下,富集倍率为26倍,富集效率为26/min,消耗指数为0.31mL。线性范围为0-1000μg/L,检出限为1.2μg/L。银含量为50μg/L时,连续11次测定的相对标准偏差为1.4%。对铅锌冶炼矿渣样液进行加标回收率试验,回收率为91.1%-100.6%,并应用于测定光谱纯氧化镁中的微量银。  相似文献   

19.
建立了氨水提取、三氯乙酸沉淀蛋白、阳离子交换净化分离,原子荧光光谱检测稻米和虾仁中无机硒的新方法。样品经氨水超声提取,三氯乙酸沉淀蛋白,Cleanert PCX小柱分离,HNO_3-HClO_4消解,HCl还原,原子荧光光谱法进行检测。结果显示,无机硒能被有效提取、分离和检测。方法在(0. 1~4. 0μg/L)浓度范围内,R~2 0. 99,仪器检出限(IDL)为0. 040μg/L,方法检出限(MDL)为1. 60μg/kg。稻米和虾仁样品的加标回收率分别为84. 1%~98. 7%和89. 8%~109. 3%,相对标准差分别为2. 3%~10%和2. 2%~3. 1%。对产地不同的稻米和虾仁样品的实际检测显示,稻米无机硒含量分别为3. 88~45. 90μg/kg,占总硒的百分比最高值为11. 27%,虾仁样品无机硒含量为小于MDL~24. 76μg/kg,占总硒的百分比最高值为3. 83%。  相似文献   

20.
固相萃取-高效液相色谱法同时测定克伦特罗和沙丁胺醇   总被引:8,自引:0,他引:8  
提出用固相萃取 -高效液相色谱法同时测定饲料中微量克伦特罗和沙丁胺醇的新方法。选用 Dikma Diamonsil C18-ODS分析柱 (2 0 0× 4.6mm,5μm) ,乙腈 -0 .0 1mol/ L KH2 PO4 (p H 3 .0 )作流动相 ,应用波长编程进行检测。克伦特罗和沙丁胺醇的线性范围为 0 .1~ 1 0 0μg/ m L,相关系数分别为 0 .99999和 0 .99977,检出限分别为0 .3 1 ng/ m L和 0 .2 4ng/ m L ,回收率分别为 91 .2 %~ 92 .0 %和 91 .9%~ 93 .0 % ,相对标准偏差分别是 1 .2 0 %~ 2 .0 5%和 1 .2 9%~ 2 .51 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号