首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
新型光催化异质结:S型异质结   总被引:3,自引:0,他引:3  
太阳能是最丰富的清洁和可再生能源,光催化技术在太阳能利用中具有很大潜力,这有赖于高效半导体光催化剂的设计制备.然而,单一光催化剂效率很低,主要是光生电子和空穴的强库伦吸引力导致它们快速复合.此外,单一光催化剂也很难同时具有宽光谱吸收和足够的氧化还原能力.为了解决这一问题,构建异质结光催化剂成为一种有效途径,因为它可以实现光生电子和空穴在空间上的有效分离.针对传统的Ⅱ型和Z型异质结在动力学和热力学方面的缺陷,2019年由武汉理工大学余家国教授团队提出梯形异质这一新型异质结概念.对于Ⅱ型异质结,热力学和动力学分析表明光生载流子的转移机理不正确.热力学和动力学分析表明光生载流子的转移机理不正确.而Z型异质结系统主要包括传统、全固态和直接Z型异质结三种类型.对于前两种异质结,它们的界面电子转移存在理论问题.传统Z型异质结利用氧化还原电对,而电子受体和给体更容易从与其具有较大的电势差的半导体接受或给予电子.全固态Z型异质结利用导体,比如导电金属或碳材料,取代氧化还原电对,从而使其应用范围由液态扩展到固态.然而通过进一步分析,它的电荷传输也有漏洞.首先,界面的肖特基势垒抑制电荷持续传输,此外,全固态Z型异质结中的导体与传统Z型中氧化还原电对的作用如出一辙.因此,传统Z型的问题在这里也依旧存在.总的来说,Ⅱ型、传统和全固态Z型都面临相同的问题,就是光生电子和空穴拥有较弱的还原和氧化能力,而S型异质结则与它们截然不同.该异质结由氧化型和还原型光催化剂组成,内建电场、能带弯曲和库仑力三大作用促使氧化型的光生电子与还原型的光生空穴复合,同时阻止氧化型的光生空穴与还原型的光生电子转移.最终,电子和空穴分别具有高的还原和氧化能力.由于其优越性,S型异质结在各种光催化应用中引起了广泛的兴趣,包括产氢、二氧化碳还原、污染物降解和灭菌等领域.而S型异质结机理可以用X射线光电子能谱、电子顺磁共振和原子力显微镜进行表征.S型异质结崭露头角,未来发展可期.  相似文献   

2.
太阳能是最丰富的清洁和可再生能源,光催化技术在太阳能利用中具有很大潜力,这有赖于高效半导体光催化剂的设计制备.然而,单一光催化剂效率很低,主要是光生电子和空穴的强库伦吸引力导致它们快速复合.此外,单一光催化剂也很难同时具有宽光谱吸收和足够的氧化还原能力.为了解决这一问题,构建异质结光催化剂成为一种有效途径,因为它可以实现光生电子和空穴在空间上的有效分离.针对传统的Ⅱ型和Z型异质结在动力学和热力学方面的缺陷,2019年由武汉理工大学余家国教授团队提出梯形异质这一新型异质结概念.对于Ⅱ型异质结,热力学和动力学分析表明光生载流子的转移机理不正确.热力学和动力学分析表明光生载流子的转移机理不正确.而Z型异质结系统主要包括传统、全固态和直接Z型异质结三种类型.对于前两种异质结,它们的界面电子转移存在理论问题.传统Z型异质结利用氧化还原电对,而电子受体和给体更容易从与其具有较大的电势差的半导体接受或给予电子.全固态Z型异质结利用导体,比如导电金属或碳材料,取代氧化还原电对,从而使其应用范围由液态扩展到固态.然而通过进一步分析,它的电荷传输也有漏洞.首先,界面的肖特基势垒抑制电荷持续传输,此外,全固态Z型异质结中的导体与传统Z型中氧化还原电对的作用如出一辙.因此,传统Z型的问题在这里也依旧存在.总的来说,Ⅱ型、传统和全固态Z型都面临相同的问题,就是光生电子和空穴拥有较弱的还原和氧化能力,而S型异质结则与它们截然不同.该异质结由氧化型和还原型光催化剂组成,内建电场、能带弯曲和库仑力三大作用促使氧化型的光生电子与还原型的光生空穴复合,同时阻止氧化型的光生空穴与还原型的光生电子转移.最终,电子和空穴分别具有高的还原和氧化能力.由于其优越性,S型异质结在各种光催化应用中引起了广泛的兴趣,包括产氢、二氧化碳还原、污染物降解和灭菌等领域.而S型异质结机理可以用X射线光电子能谱、电子顺磁共振和原子力显微镜进行表征.S型异质结崭露头角,未来发展可期.  相似文献   

3.
二氧化钛(TiO_2)因廉价、无毒、化学性质稳定以及具有较强的光催化氧化还原能力,在光催化领域占据着重要的地位。然而,可见光利用率低以及光生电子-空穴对的快速复合是限制其应用的2个主要因素。二氧化钛基Z型异质结作为一种新型光催化剂,既改善了二氧化钛的2个缺陷,又表现出比TiO_2更强的氧化或还原能力。本文概括了TiO_2光催化剂、异质结光催化剂和TiO_2基Z型光催化剂的能带排列和电子传递原则,探讨了Z型异质结和type-Ⅱ异质结的异同点以及区分方法,并归纳总结了TiO_2基Z型异质结在光催化领域中的应用。  相似文献   

4.
含有机物工业废水的处理仍然是人类实现可持续发展的重大挑战.而光催化作为一种先进的氧化环保技术,以其反应条件温和、能耗相对较低的优点在有机废水处理中受到越来越多的关注.近年来,人们设计和合成了许多不同结构和形状的光催化剂.特别是金属氧化物半导体以其适宜的能带结构、稳定的物化性质、无毒性等特点已成为光催化降解有机废水的研究热点.此外,一维纳米结构(1D)已被证实有利于光催化降解过程,其优势在于比表面积大,离子的迁移路径短,以及独特的一维电子转移轨道.尤其是TiO2纳米纤维由于其亲水性、特殊的形貌和合适的能带位置,在污染物水溶液的处理中表现出优异的光催化性能.然而,TiO2(~3.2 eV)的宽禁带、光生载流子的易复合等缺陷导致其光利用率较低,限制了其实际应用.因此,人们提出了许多提高光催化活性的策略,如掺杂金属或非金属元素、负载贵金属、构建异质结等.构建梯形(S型)异质结已被证实是提高复合材料光催化活性的一种有前途的策略.S型异质结不仅能有效地分离光生电子和空穴,而且还原能力低的半导体CB上的电子和氧化能力低的半导体VB上的空穴复合,而氧化还原能力较强的空穴和电子分别被保留.因此,这一电子转移过程赋予了复合物最大的氧化还原能力.同时,在g-C3N4中引入硫元素可以拓宽其光吸收范围,从而产生更多的光生载流子.此外,额外的表面杂质将有助于e?-h+对的分离,其光催化活性明显高于单纯的g-C3N4.综合一维纳米结构、硫掺杂和S型异质结的优势,本文采用静电纺丝和煅烧法制备了一系列硫掺杂的g-C3N4(SCN)/TiO2 S型光催化剂.制备的SCN/TiO2复合材料在光催化降解刚果红(CR)水溶液中表现出比纯TiO2和SCN更优越的光催化性能.光催化活性的显著增强是由于一维分布的纳米结构和S型异质结.此外,XPS分析和DFT计算表明,电子从SCN通过SCN/TiO2复合材料的界面转移到TiO2.在模拟太阳光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有最高的氧化还原能力.这些结果通过自由基捕获实验、ESR实验和XPS原位分析得到了充分的验证,说明光催化剂中的电子迁移遵循S型异质结机理.本文不仅可以丰富了新型S型异质结光催化剂的设计和制备方面的知识,并为未来解决环境污染问题提供一个有前景的策略.  相似文献   

5.
过氧化氢作为一种绿色氧化剂,被广泛应用于食品工业、有机合成、医疗消毒和污水处理等领域.目前,大多数用于工业生产的过氧化氢是通过蒽醌法制备.传统的蒽醌法能耗高、有机副产物多、环境污染严重,因此,利用清洁的太阳能进行半导体光催化生产过氧化氢备受关注.其中,ZnO半导体因其高稳定性、无毒性、良好的生物相容性和合适的导带位置而成为一种潜在的过氧化氢生产材料.然而,单一的ZnO在光催化生产过氧化氢中面临着许多问题,如载流子分离效率低、可见光吸收弱等,从而导致其较低的光催化性能.因此,多种策略被用于解决上述问题,如掺杂非贵金属元素、晶面调控和异质结构构建等.在这些改性策略中,异质结构建被认为是提高光催化性能最有效的方法之一,特别是S型异质结因其较好的氧化还原能力和电子转移特性而备受关注.S型异质结通常由一个氧化型光催化剂和一个还原型光催化剂组成,在两者的接触界面上形成内建电场,促使无用的载流子复合,从而保留更多具有强氧化还原能力的空穴和电子,以此提高异质结光催化性能.ZnIn2S4具有合适的带隙和高导带位置,可以作为还原型光催化剂与ZnO构建S型异质结,...  相似文献   

6.
纳米异质结光催化剂制氢研究进展   总被引:2,自引:0,他引:2  
随着世界经济的迅猛发展,人们生活水平飞速提高的同时,能源短缺和环境污染成为当前人类可持续发展过程中的两大严峻问题.氢作为一种能源载体,能量密度高,可储可运,且燃烧后唯一产物是水,不污染环境,被认为是今后理想的无污染可再生替代能源.20世纪60年代末,日本学者Fujishima和Honda发现光照n-型半导体TiO2电极可导致水分解,使人们认识到了利用半导体光催化分解水制氢可直接将太阳能转化为氢能的可行性,利用半导体光催化分解水制氢逐渐成为能源领域的研究热点之一.然而,单相光催化材料的光生电子和空穴复合仍然严重,光催化制氢效率低,无法满足实际生产需要;另外,单相光催化材料不能同时具备较窄的禁带、较负的导带和较正的价带.近年来,国内外学者在新型光催化材料的探索、合成和改性以及光催化理论等领域开展了大量研究工作.不断有不同种类的半导体材料被研究和发展为光催化分解水制氢催化材料.例如,具有可见光催化活性的阴、阳离子掺杂TiO2,具有可见光下光解纯水能力的In0.9Ni0.1TaO4,在256 nm紫外光辐照下量子效率达到56%的镧掺杂NaTaO3,CdS以及(AgIn)xZn2(1-x)S2等.在现有的光催化材料中,单相光催化材料可以通过掺杂、形貌控制合成、晶面控制合成、染料敏化和表面修饰等提高其光催化活性.复合型光催化材料则能通过组合不同电子结构的半导体材料并调控其光生载流子迁移获得优异的光催化制氢性能,大幅拓展了光催化制氢材料的研究范围和提升了光催化制氢性能.构建异质结能够有效提高光生电子-空穴分离效率,促使更多的光生电子参与光催化制氢反应,提高其氧化还原能力,从而提高其光催化制氢效率.在I-型纳米异质结中,半导体A的价带高于半导体B,而导带则是前者高于后者,光照时,光生电子-空穴对的迁移速率是不同的,延长了光生电子的寿命,从而提高了材料的光催化活性.但是在I-型异质结中,电子和空穴都集中在B半导体上,这样光生电子-空穴对的复合几率仍然很高.II-型异质结中电子和空穴的富集处各不相同,因此使用范围也更广泛一些.光辐照激发时,光生电子从半导体B的导带迁移到半导体A的导带上,而空穴则从半导体A的价带向半导体B的价带上转移,从而形成了载流子的空间隔离,有效抑制其复合.但是,在这个类型的异质结中,光生电子转移到了相对位置较低的导带,而空穴则转移到相对位置较高的价带,这样就降低了光生电子的还原能力和空穴的氧化能力.pn型异质结中,在两种半导体相互接触时,由于电子-空穴对的扩散作用,两种半导体的能带发生漂移,其中p型上移,n型下移.而且在两种半导体异质结的界面处会产生空间电荷层,在这个电荷层的作用下,在异质结界面上形成内建电场.在合适波长的光源辐照的条件下,两种半导体同时被激发,光生电子在内建电场的作用下,从p型半导体快速迁移到n型半导体上,而n型半导体中留在价带上的空穴则快速迁移到p型半导体上,这样光生电子-空穴对就得到了有效的分离.在以Z型载流子迁移为主导的异质结构材料中摈弃了中间媒介,通过控制界面的载流子迁移使低能量的光生电子与空穴直接复合保留高能量的光生电子-空穴,从而提高了材料的光催化效率.本文介绍了纳米异质结光催化剂在设计合成方面的研究进展,总结了几种纳米异质结(I-型、II-型、pn-型及Z-型)的光催化原理及其在制取氢气方面的研究进展,并展望了研究发展方向.期望本文能够加深研究者对该领域的理解,为今后高效光催化材料的设计提供帮助和指导.  相似文献   

7.
伴随着人类文明的快速发展,一些危机慢慢显露出来,例如能源危机、环境污染和全球变暖.2019年5月11日,Mauna Loa天文台报告,大气中的二氧化碳水平超过415 ppm,达到人类历史上的最高记录,欧盟随后于2019年11月宣布了气候紧急状态.因此,绿色能源技术已成为迫切需求,以减少化石燃料的使用,并减少污染物的产生.光催化是直接利用太阳能的技术,可以应用于水分解产氢、CO2还原、降解有机污染物、促进有机物合成等,是解决能源和环境问题的最有前途的技术之一.光催化剂是光催化技术的核心.目前,许多半导体材料可作为光催化剂,并已被充分地研究,例如TiO2、CdS、ZnO、BiVO4和C3N4等.然而,单一的半导体材料具有一些缺点,阻碍了它们的实际应用.其中,限制这些半导体材料光催化活性的一个关键问题是,光生电子–空穴对容易快速复合而不是参与光催化反应.例如,ZnO中激子的寿命估计仅为数百皮秒,大多数激子来不及参与到氧化还原反应中.为了抑制电子-空穴对的复合,需要应用特殊的策略.构建异质结光催化材料已成为最有前途的方法之一.通常,可以根据相邻材料的能带结构,将异质结分为以下几种类型:PN型异质结,Ⅱ型异质结,Schottky型异质结和S型异质结.以上异质结大都是由两种半导体材料复合而形成的.除此之外,还可以根据形成异质结的特殊材料,补充两种特殊的异质结类型,即晶面异质结和石墨烯基异质结.晶面异质结是由同一材料,由于暴露不同的晶面而形成的.石墨烯具有独特的能带结构、极大的比表面积及优良的导电性,可以与其他半导体形成各种类型的异质结.这些异质结材料能有效抑制电子-空穴对的复合,从而提高材料整体的光催化活性,也已成为光催化剂家族的重要分支.本文详细介绍了以上各种类型的异质结光催化剂的最新进展,概述了实现高性能异质结光催化剂的基本策略,并对异质结光催化剂未来发展方向进行了一些探讨.  相似文献   

8.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

9.
太阳能是最丰富的清洁和可再生能源,光催化技术在太阳能利用中具有很大潜力,这有赖于高效半导体光催化剂的设计制备.然而,单一光催化剂效率很低,主要是光生电子和空穴的强库伦吸引力导致它们快速复合.此外,单一光催化剂也很难同时具有宽光谱吸收和足够的氧化还原能力.为了解决这一问题,构建异质结光催化剂成为一种有效途径,因为它可以实现光生电子和空穴在空间上的有效分离.针对传统的II型和Z型异质结在动力学和热力学方面的缺陷, 2019年由武汉理工大学余家国教授团队提出梯形异质这一新型异质结概念.对于II型异质结,热力学和动力学分析表明光生载流子的转移机理不正确.热力学和动力学分析表明光生载流子的转移机理不正确.而Z型异质结系统主要包括传统、全固态和直接Z型异质结三种类型.对于前两种异质结,它们的界面电子转移存在理论问题.传统Z型异质结利用氧化还原电对,而电子受体和给体更容易从与其具有较大的电势差的半导体接受或给予电子.全固态Z型异质结利用导体,比如导电金属或碳材料,取代氧化还原电对,从而使其应用范围由液态扩展到固态.然而通过进一步分析,它的电荷传输也有漏洞.首先,界面的肖特基势垒抑制电荷持续传输,此外,全固态Z型异质结中的导体与传统Z型中氧化还原电对的作用如出一辙.因此,传统Z型的问题在这里也依旧存在.总的来说, II型、传统和全固态Z型都面临相同的问题,就是光生电子和空穴拥有较弱的还原和氧化能力,而S型异质结则与它们截然不同.该异质结由氧化型和还原型光催化剂组成,内建电场、能带弯曲和库仑力三大作用促使氧化型的光生电子与还原型的光生空穴复合,同时阻止氧化型的光生空穴与还原型的光生电子转移.最终,电子和空穴分别具有高的还原和氧化能力.由于其优越性, S型异质结在各种光催化应用中引起了广泛的兴趣,包括产氢、二氧化碳还原、污染物降解和灭菌等领域.而S型异质结机理可以用X射线光电子能谱、电子顺磁共振和原子力显微镜进行表征.S型异质结崭露头角,未来发展可期.  相似文献   

10.
余长林  周晚琴  余济美  刘鸿  魏龙福 《催化学报》2014,35(10):1609-1618
在过去的几十年中,光催化由于具有将太阳能转化为清洁氢化学能和降解各种污染物的广泛应用前景,因而引起了人们广泛关注.近期,很多研究表明,两个具有相匹配电子能级结构的半导体形成接触良好的异质结,可以有效地促进电荷转移和抑制光生电子(e–)和空穴(h+)的复合,从而显著提高光催化剂的活性和稳定性.本文主要讨论了异质结对半导体光催化剂的促进作用;分析了异质结对一些典型光催化剂如TiO2,ZnO和Ag基半导体等光催化性能的影响;讨论了异质结光催化剂的制备方法和对光催化过程影响的基本机理;最后,提出了设计和理解异质结促进光催化反应机理所面临的挑战.  相似文献   

11.
开发低成本的半导体光催化剂以实现可见光下高效、持久的光催化分解水产氢是一个非常具有挑战性的课题.近年来,具有高产氢活性的CdS光催化剂引起了人们的研究兴趣.但是光生电子-空穴对快速复合、反应活性位点不足以及严重的光腐蚀等问题,严重地制约了CdS在光催化领域的实际应用.构建S型异质结和负载助催化剂被认为是促进光生电子空穴分离和加速产氢动力学的有效策略.本文通过在低成本的WO3和Ti3C2MXene(MX)纳米片上生长CdS纳米片,设计并构建了具有二维耦合界面的2D/2D/2D层状异质结光催化剂,以实现高效的可见光光催化分解水产氢.首先通过水热煅烧和刻蚀的方法分别制备了WO3和MX纳米片,然后以乙酸镉和硫脲为原料在乙二胺溶剂中通过水热法合成了MX-CdS/WO3层状异质结光催化剂.在可见光下,以乳酸为牺牲剂测试了光催化剂的产氢活性且经过4次连续的循环反应,MX-CdS/WO3体系展现出良好的活性及稳定性.在可见光的照射下,MX-CdS/WO3层状异质结光催化剂最高的可见光光催化分解水产氢速率达到了27.5 mmol/g/h,是纯CdS纳米片的11倍.与此同时,在450 nm的光照下,表观量子效率达到了12.0%.为了深入探讨其高效产氢机理,通过X射线衍射、X射线光电子能谱、原子力显微镜、透射电镜、高分辨电子显微镜等对MX-CdS/WO3体系的组成和结构进行分析.结果表明,实验成功地合成了CdS,WO3和MX三种纳米片及其复合材料.通过紫外-可见漫反射光谱研究了样品材料的光吸收能力.通过表面光电压、稳态及瞬态荧光光谱等研究了材料的电荷载流子复合和转移行为,发现MX-CdS/WO3的光生电子空穴对相比与纯CdS或者二元复合材料具有更高的分离效率.UPS和ESR等表征结果说明,材料内部电场的方向和在光照条件下光生载流子的迁移方向,从而证实了S型异质结和欧姆结的成功构建.综上,在MX-CdS/WO3光催化剂体系中,S型异质结形成较强的界面电场能够有效促进CdS纳米片与WO3纳米片之间光生电子-空穴对的分离.同时,二维Ti3C2MXene纳米片作为辅助催化剂,通过与CdS/WO3纳米片构建欧姆结,进而提供大量的电子转移途径和更多的析氢反应活性位点,使得CdS光催化剂的光催化活性和稳定性得到了很大的提升.通过构建S型内建电场、欧姆结和2D/2D界面可以协同提高CdS纳米片的光催化性能,从而加速光生电子在异质结中的分离和利用.本文所采用基于S型异质结与欧姆结基助催化剂之间的耦合策略可以作为一种通用策略扩展到其它传统半导体光催化剂的改性中,从而推进高效光催化产氢材料的有效合成.  相似文献   

12.
长期以来,陆地、大气和海洋之间的碳循环维持了大自然碳平衡.随着密集人类活动和高度工业发展,碳燃料、碳化学品和碳材料广泛应用于各个领域,导致碳排放过量,碳平衡已被严重破坏,碳污染已成为一个严峻问题.例如,持久性有机污染物和挥发性有机化合物过量排放到环境中,威胁着人类的健康和生态平衡.人们陆续开发出各种先进的环境技术,如微生物分解,去除空气和水中的碳基污染物,将有毒有害的有机化合物转化为无害CO2.但是,CO2本身是大气中的主要温室气体,它在大气中的浓度早超过了天然碳循环所能维持的环境自洁净能力.基于先进催化技术建立人工碳循环,将有机污染物矿化生成的CO2进一步转化为有价值的有机化学品(如太阳能燃料)是一种理想的低碳方法.光合作用是自然碳循环中核心过程之一,是降低大气中CO2浓度的关键.受到光合作用启发,科学家们积极开发人工光合成技术推动CO2资源化.人工光合成技术本质上基于半导体光催化过程.半导体光催化过程具有双重作用.一方面,基于有氧光催化氧化过程,有机污染物可以矿化生成无毒CO2.另一方面,基于缺氧光催化还原过程,CO2可以转化为碳氢化合物太阳能燃料.理论上,结合上述两个过程,为建立人工碳循环奠定基础,但是,至今很少有人成功建立有氧氧化-无氧还原串联光催化工艺,实现人工碳循环.难点在于有机污染物的有氧氧化反应和CO2的无氧还原反应的操作条件与反应机制是完全不同的,目前缺乏同时适用于上述两种反应的双功能光催化剂.本文成功构建了具有双功能的g-C3N4/Bi/BiVO4三元复合光催化剂,它不仅在降解有机污染物方面表现出优异的有氧光催化氧化性能(以降解染料罗丹明B为例),而且还表现出优异的缺氧CO2光催化还原性能.此外,基于“一锅法”厌氧耦合氧化-还原反应,g-C3N4/Bi/BiVO4三元复合光催化剂成功实现同步罗丹明B降解与太阳能燃料生成,构建了从毒害有机污染物到高品质太阳燃料的碳循环.结合牺牲剂实验分析与密度泛函理论理论计算,作者提出g-C3N4/Bi/BiVO4复合光催化剂的双功能性与g-C3N4与BiVO4界面内建S-型复合异质结有关.S-型复合异质结既促进界面电荷转移与分离,又维持了最佳电荷氧化还原电位.此外,S型g-C3N4/Bi/BiVO4复合光催化剂中原位生成的具有等离子体效应的Bi纳米颗粒具有双重作用,既促进界面电荷定向转移,又促进可见光吸收.本文开发的新型双功能S-型g-C3N4/Bi/BiVO4复合光催化剂系统为进一步开发集成式有氧-缺氧光催化碳循环反应系统奠定基础.  相似文献   

13.
Graphene possesses excellent conductivity, adsorptivity, and controllability. The combination of photocatalysts and graphene will introduce these properties of graphene into photocatalysis. In this paper, graphene oxide-Bi(2)WO(6) composite was firstly prepared via in situ hydrothermal reaction in the presence of graphene oxide, then the graphene oxide was reduced by ethylene glycol and the graphene-Bi(2)WO(6) (G-BWO) composite was formed. The as-prepared graphene-Bi(2)WO(6) photocatalyst shows enhanced photocatalytic activity for the degradation of rhodamine B (RhB) under visible light (λ > 420 nm). The electronic interaction and charge equilibration between graphene and Bi(2)WO(6) lead to the shift of the Fermi level and decrease the conduction band potential, which has an important influence on the photocatalytic process. The enhanced photocatalytic activity could be attributed to the negative shift in the Fermi level of G-BWO and the high migration efficiency of photoinduced electrons, which may suppress the charge recombination effectively.  相似文献   

14.
以原位沉淀法和水热法混合的合成手段,制备了TiO_2/CuS异质结光催化剂。这种异质结改善了单一TiO_2半导体光催化剂的缺陷,明显提高了太阳光下光催化降解甲基橙的效率。TiO_2与CuS之间形成的异质结结构和合适的能带结构能够扩展材料对太阳光谱的响应范围并且很好地收集和传输光诱导载流子,从而提高了载流子的分离效率,最终使半导体的光催化活性明显增强。结果表明,太阳光照射25min后,相比于TiO_2/MnS、TiO_2/CdS和TiO_2/ZnS异质结,TiO_2/CuS异质结(TiO_2和CuS的摩尔比为3∶1)对甲基橙的降解效果最佳,降解效率能达到97.3%。为提高半导体的光催化活性提供了一条可行的路径。  相似文献   

15.
以钛酸四丁酯、KBr、AgNO3为前体,合成了具有异质结结构的纳米AgBr/Ti O2复合可见光催化剂.利用XRD、TEM、HRTEM和UV-Vis等方法对催化剂的晶相组成、形貌、粒度、微观结构、吸光性能等进行了表征.光催化降解亚甲基蓝活性结果表明,复合与单组分催化剂的光催化活性顺序为:AgBr/Ti O2AgBrAg-Br/P25P25Ti O2.含光敏剂AgBr的复合及单组份催化剂由于具有对可见光的良好吸收性能而具有较高的光催化活性.对于AgBr/Ti O2光催化剂,随mAgNO3/mTi O2比的增加,光催化活性先增强后减弱,当mAgNO3/mTi O2=3.35时光催化活性最高,分析结果表明,该复合催化剂粒径约15 nm,分散均匀且形成了紧密接触的AgBr/Ti O2异质结微结构,在紫外可见区(250~800 nm)都具有最强的光吸收.  相似文献   

16.
以钛酸正丁酯为前驱体, 采用静电纺丝技术制得了纯锐钛矿TiO2纤维, 并以其为基质, 通过水热法制备了具有异质结构的WO3/TiO2复合纤维. 利用X射线衍射仪(XRD)、 扫描电子显微镜(SEM)、 能量色散光谱仪(EDS)、 透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等对样品的结构和形貌进行了表征. 以罗丹明B的脱色降解为模型反应, 考察了样品的光催化性能和储能光催化性能. 结果表明, 花状WO3微球包裹在TiO2纤维上, 得到了具有异质结构的WO3/TiO2复合纤维光催化剂. WO3与TiO2复合有利于光生载流子的输运和分离, 增强了体系的量子效率, 提高了光催化活性. WO3/TiO2 复合纤维经光照处理后, 在黑暗条件下显示出储能光催化特性.  相似文献   

17.
 用溶胶-凝胶法在表面包覆了SiO2的磁基体Fe3O4上负载TiO2,从而得到了易于磁性固液分离的磁载WO3-TiO2/SiO2/Fe3O4复合光催化剂,并通过IR,XRD,SEM和XPS等测试手段对催化剂进行了表征.研究了磁载WO3-TiO2/SiO2/Fe3O4复合光催化剂对亚甲基蓝溶液脱色的性能,并考察了WO3掺杂量对样品催化活性的影响.结果表明,n(WO3)/n(TiO2)=0.001时,磁载WO3-TiO2/SiO2/Fe3O4复合光催化剂的催化活性最高,循环使用3次时脱色率仍保持在98%.  相似文献   

18.
全球工业化进程的加快使人们饱受环境污染问题的困扰.半导体光催化技术作为一种高效、绿色、有潜力的新技术,在环境净化方面有着广阔的应用前景.Bi2O4是近年来新开发出的一种铋基光催化剂,在环境净化方面已有一些研究.但是,单体光催化剂通常存在光响应范围窄、光生载流子复合率高等问题,这些不足限制了Bi2O4的进一步应用.因此,需要通过适当的改性来拓宽其光响应范围和提高其载流子的分离效率,从而提高其光催化活性.构建Z型异质结被认为是提高光催化剂光生载流子分离效率并进一步提高光催化活性的有效方法.MoO3是一种宽禁带的n型半导体,具有独特的能带结构、光学特性和表面效应,是一种非常有前景的半导体光催化剂.虽然MoO3材料的光生载流子复合率高,带隙(2.7-3.2 eV)大,不利于其参与光催化反应,但MoO3与其他合适的半导体配位形成复合材料后能够有效提高其光生载流子的分离效率,从而提高其光催化活性.本研究采用简单的水热法制备了一种新型Z型MoO3/Bi2O4复合光催化剂,SEM和TEM分析结果表明,MoO3和Bi2O4紧密结合在一起.X射线光电子能谱分析表明,MoO3和Bi2O4之间存在很强的界面相互作用,这有助于电荷转移和光生载流子的分离.光致发光光谱、电阻抗和光电流测试也证明了MoO3/Bi2O4复合光催化剂的光生载流子分离效率更高,形成了更强的光电流.通过在可见光下降解RhB溶液评价了所合成光催化剂的光催化性能.15%MoO3/Bi2O4(15-MB)复合光催化剂表现出了最佳的可见光催化活性,在40 min内对10 mg/L RhB溶液的降解率达到了99.6%,其降解速率是Bi2O4的2倍.此外,15-MB复合光催化剂在经过五次循环降解RhB溶液后仍保持良好的光催化活性和稳定性,表明MoO3/Bi2O4复合光催化剂具有较强的应用潜力.通过自由基捕获实验确定了光催化反应中主要的活性自由基为 O2-和h+.通过莫特-肖特基测试和带隙计算得到MoO3和Bi2O4的价带和导带位置.最后,根据实验和分析结果提出了Z型MoO3/Bi2O4复合光催化剂在可见光下降解RhB溶液的机理.本研究为设计铋基Z型异质结光催化剂用于高效去除环境污染物提供了一种有前景的策略.  相似文献   

19.
研究采用水热法制备了花状Bi_2WO_6与TiO_2和Bi-TiO_2相复合的光催化剂,并使用新型LED节能灯为光源催化氧化室内甲醛.研究发现,粉末态Bi_2WO_6显示出花状结构,但无光催化氧化活性,而将Bi_2WO_6粉末与TiO_2和Bi-TiO_2复合后,两者相互作用所形成异质结结构形态,尤其Bi_2WO_6/Bi-TiO_2催化剂,所制样品展示出更佳的催化氧化活性,而经浸渍法所得样品几乎无光催化氧化活性,催化剂随着TiO_2和Bi-TiO_2含量的增加,复合催化剂显现出不尽相同的氧化活性规律,其中Bi_2WO_6与Bi-TiO_2质量比为1∶2样品表现最佳,36 h催化氧化甲醛转化率高达92.2%,甲醛浓度低于我国居室空气中甲醛最高容许浓度,且催化剂显示出良好的稳定性及重复性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号