首页 | 本学科首页   官方微博 | 高级检索  
     检索      

集成二维层状CdS/WO3S型异质结及金属化Ti3C2MXene基欧姆结高效光催化产氢
引用本文:白浚贤,沈荣晨,周康,姜志民,张鹏,李鑫.集成二维层状CdS/WO3S型异质结及金属化Ti3C2MXene基欧姆结高效光催化产氢[J].催化学报,2022(2):359-369.
作者姓名:白浚贤  沈荣晨  周康  姜志民  张鹏  李鑫
作者单位:华南农业大学生物质工程研究院, 农业部能源植物资源与利用重点实验室, 广东广州510642;郑州大学材料与工程学院, 低碳环保材料智能设计国际联合研究中心, 河南郑州450001
基金项目:国家自然科学基金(21975084,51672089);华南农业大学丁颖人才计划.
摘    要:开发低成本的半导体光催化剂以实现可见光下高效、持久的光催化分解水产氢是一个非常具有挑战性的课题.近年来,具有高产氢活性的CdS光催化剂引起了人们的研究兴趣.但是光生电子-空穴对快速复合、反应活性位点不足以及严重的光腐蚀等问题,严重地制约了CdS在光催化领域的实际应用.构建S型异质结和负载助催化剂被认为是促进光生电子空穴分离和加速产氢动力学的有效策略.本文通过在低成本的WO3和Ti3C2MXene(MX)纳米片上生长CdS纳米片,设计并构建了具有二维耦合界面的2D/2D/2D层状异质结光催化剂,以实现高效的可见光光催化分解水产氢.首先通过水热煅烧和刻蚀的方法分别制备了WO3和MX纳米片,然后以乙酸镉和硫脲为原料在乙二胺溶剂中通过水热法合成了MX-CdS/WO3层状异质结光催化剂.在可见光下,以乳酸为牺牲剂测试了光催化剂的产氢活性且经过4次连续的循环反应,MX-CdS/WO3体系展现出良好的活性及稳定性.在可见光的照射下,MX-CdS/WO3层状异质结光催化剂最高的可见光光催化分解水产氢速率达到了27.5 mmol/g/h,是纯CdS纳米片的11倍.与此同时,在450 nm的光照下,表观量子效率达到了12.0%.为了深入探讨其高效产氢机理,通过X射线衍射、X射线光电子能谱、原子力显微镜、透射电镜、高分辨电子显微镜等对MX-CdS/WO3体系的组成和结构进行分析.结果表明,实验成功地合成了CdS,WO3和MX三种纳米片及其复合材料.通过紫外-可见漫反射光谱研究了样品材料的光吸收能力.通过表面光电压、稳态及瞬态荧光光谱等研究了材料的电荷载流子复合和转移行为,发现MX-CdS/WO3的光生电子空穴对相比与纯CdS或者二元复合材料具有更高的分离效率.UPS和ESR等表征结果说明,材料内部电场的方向和在光照条件下光生载流子的迁移方向,从而证实了S型异质结和欧姆结的成功构建.综上,在MX-CdS/WO3光催化剂体系中,S型异质结形成较强的界面电场能够有效促进CdS纳米片与WO3纳米片之间光生电子-空穴对的分离.同时,二维Ti3C2MXene纳米片作为辅助催化剂,通过与CdS/WO3纳米片构建欧姆结,进而提供大量的电子转移途径和更多的析氢反应活性位点,使得CdS光催化剂的光催化活性和稳定性得到了很大的提升.通过构建S型内建电场、欧姆结和2D/2D界面可以协同提高CdS纳米片的光催化性能,从而加速光生电子在异质结中的分离和利用.本文所采用基于S型异质结与欧姆结基助催化剂之间的耦合策略可以作为一种通用策略扩展到其它传统半导体光催化剂的改性中,从而推进高效光催化产氢材料的有效合成.

关 键 词:光催化分解水产氢  2D层状S型异质结  CdS纳米片  WO3纳米片  Ti3C2MXene基欧姆结  2D耦合界面

Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation
Junxian Bai,Rongchen Shen,Kang Zhou,Zhimin Jiang,Peng Zhang,Xin Li.Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation[J].Chinese Journal of Catalysis,2022(2):359-369.
Authors:Junxian Bai  Rongchen Shen  Kang Zhou  Zhimin Jiang  Peng Zhang  Xin Li
Institution:(Institute of Biomass Engineering,Key Laboratory of Energy Plants Resource and Utilization,Ministry of Agriculture and Rural Affairs,South China Agricultural University,Guangzhou 510642,Guangdong,China;State Centre for International Cooperation on Designer Low‐Carbon&Environmental Materials(CDLCEM),School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,Henan,China;College of Chemistry and Chemical Engineering,Jishou University,Jishou 416000,Hunan,China)
Abstract:The rapid recombination of photo-generated electron-hole pairs, insufficient active sites, and strong photocorrosion have considerably restricted the practical application of CdS in photocatalytic fields. Herein, we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cas-caded 2D coupling interfaces. Experiments using electron spin resonance spectroscopy, ultraviolet photoelectron spectroscopy, and in-situ irradiation X-ray photoelectron spectroscopy were con-ducted to confirm the 2D layered CdS/WO3 step-scheme (S-scheme) heterojunctions and CdS/MX ohmic junctions. Impressively, it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO3 nanosheets. In addition, 2D Ti3C2 MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junc-tions with CdS nanosheets, thus providing a greater number of electron transfer pathways and hydrogen evolution sites. Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-CdS/WO3 layered multi-heterostructures could reach as high as 27.5 mmol/g/h, which was 11.0 times higher than that of pure CdS nanosheets. Notably, the apparent quantum efficiency reached 12.0% at 450 nm. It is hoped that this study offers a reliable approach for devel-oping multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.
Keywords:Photocatalytic hydrogen evolution  2D layered S-scheme heterojunction  CdS nanosheets  WO3 nanosheets  Ti3C2 MXene-based ohmic junctions  Cascade 2D coupling interfaces
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号