首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   6篇
化学   6篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
江静  曹少文  胡成龙  陈春华 《催化学报》2017,(12):1981-1989
利用半导体光催化技术将太阳能转化为清洁化学能源是解决能源危机和环境问题的最有潜力的途径之一.过去几十年,许多半导体包括氧化物、硫化物和氮化物均表现出光催化活性.然而,半导体光催化的实际应用仍然受制于其较低的太阳能转化效率.解决上述问题的方法之一是发展高效的可见光光催化制氢材料.近年来,石墨相氮化碳(g-C_3N_4)作为一种聚合物半导体材料,受到了光催化研究人员的广泛关注.g-C_3N_4具有可见光吸收能力、合适的导带价带位置、良好的热稳定性和化学稳定性,且制备方法简单和结构易调控,是一种极具潜力的光催化制氢材料.然而g-C_3N_4仍然仅能吸收波长450 nm以下的光,且其光生电子和空穴极易复合,因而光催化制氢效率较低.目前,研究人员采用了多种改性方法来增强g-C_3N_4的光催化性能,其中通过元素掺杂进行能带结构调控是一种非常有效的策略.而碱金属原子(Li,Na和K)被认为可有效进入g-C_3N_4的内部结构,通过引入缺陷来拓宽g-C_3N_4的光吸收范围和提高光生电荷的分离效率.不过到目前为止,尚未见系统的比较研究来深入理解不同碱金属元素掺杂的g-C_3N_4在可见光光催化制氢中的性能差异.本文采用X射线衍射(XRD)、氮气吸附-脱附测试、紫外可见漫反射光谱(UV-visDRS)、时间分辨荧光光谱(TRPL)、X射线光电子能谱(XPS)、光电化学测试和光催化制氢测试等表征和测试手段比较研究了不同碱金属元素掺杂的g-C_3N_4在结构、光学性质、能带结构、电荷转移能力和光催化性能等方面的差异.XRD结果表明,碱金属掺杂可导致g-C_3N_4的层间距离增大,且碱金属原子半径越大,g-C_3N_4的层间距离越大.氮气吸附-脱附测试结果表明,碱金属掺杂可提高g-C_3N_4的比表面积,其中Na掺杂的最高.UV-vis DRS和XPS谱结果表明,依Li,Na,K的顺序,碱金属掺杂导致g-C_3N_4带隙逐渐变窄,使得可见光吸收能力逐渐增强,且其导带和价带位置逐渐下移.TRPL和光电化学测试结果显示,碱金属掺杂有效抑制了g-C_3N_4的光生载流子复合和促进了光生载流子的转移,其中Na掺杂的g-C_3N_4的光生载流子利用效率最高.可见光光催化制氢实验表明,碱金属掺杂显著提升了g-C_3N_4的光催化性能,其中以Na掺杂的g-C_3N_4性能最佳,其产氢速率(18.7mmol h–1)较纯的g-C_3N_4(5.0mmol h–1)可提高至3.7倍.由此可见,g-C_3N_4的掺杂改性是一个对其微结构和能带结构的优化调控过程,最终获得最优的光催化性能.  相似文献   
2.
可见光铋系光催化剂的研究进展   总被引:5,自引:0,他引:5  
赫荣安  曹少文  周鹏  余家国 《催化学报》2014,35(7):989-1007
当前工业发展导致了严重的能源和环境危机,光催化为这一难题提供了有效的解决方案.然而在实际应用中,传统氧化物光催化剂宽的带隙限制了它的可见光吸收,于是窄带隙光催化剂成为了研究的热点.其中铋系光催化剂以其高的可见光光催化活性引起了人们的广泛关注.因此本文介绍了铋系光催化剂的种类、制备、形貌、复合、性能等方面的研究现状,并展望了含铋可见光催化剂发展前景.  相似文献   
3.
在过去的几十年里,化石能源的过度消耗导致了全球能源短缺和环境污染,这严重制约着人类社会发展.因此,寻找一种清洁的可再生的能源成为了人们亟待解决的问题.太阳能是地球上最丰富的能源,通过半导体光催化技术把太阳能转化为清洁的氢能是解决能源危机和缓解环境污染最有效的方法之一.石墨相氮化碳(CN)具有合适的能带结构、良好的稳定性、无毒性,且合成方法简单、成本低廉,因而被视为是一种非常有潜力的半导体光催化剂.然而,由于CN在光催化反应过程中光生电子与空穴极易发生复合,严重影响了电子从体相到外表面的转移过程以及随后的光催化质子还原反应,使得CN光催化制氢效率不高.通过负载助催化剂可以有效地促进光生电子和空穴的分离.但是现有的高效助催化剂一般为贵金属,如Pt, Pd和Au等,成本较高,不利于实际应用.因此,寻找高效、稳定且廉价的助催化剂成为光催化领域的挑战之一.本文通过化学镀的方法将Ni-P合金团簇锚定在CN表面,并通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-visDRS)、X射线光电子能谱(XPS)、稳态荧光光谱(PL)、时间分辨荧光光谱(TRPL)、光电化学测试和光催化制氢测试等方法研究了负载Ni-P助催化剂对CN晶体结构、化学组成、微观形貌、吸光能力、电荷转移以及光催化性能的影响.XRD, FTIR, FESEM和TEM的结果显示, Ni-P均匀紧密地与CN结合在一起.UV-visDRS测试表明,负载Ni-P提高了材料体系的光吸收能力.XPS结果表明,在复合光催化剂中电子从CN转移到了Ni-P助催化剂上,表明光催化剂和助催化剂之间强的界面相互作用.PL, TRPL和光电化学测试结果表明,与普通CN相比,负载了Ni-P的CN有更小的荧光强度、更短的荧光寿命和更小的电荷转移电阻.这说明负载Ni-P助催化剂提高了CN的电荷转移效率,抑制了光生电子和空穴的复合.因此在光催化制氢反应中,复合光催化剂的氢气产率可高达1506μmolh~(-1) g~(-1),可以与负载贵金属Pt助催化剂的CN相媲美,并且在9 h的循环试验中,产氢性能没有明显下降.综上所述, Ni-P合金团簇在光催化质子还原反应中有望作为贵金属助催化剂的高效、稳定且廉价的替代品.  相似文献   
4.
张庆贺  夏阳  曹少文 《催化学报》2021,42(10):1667-1676
采用悬浮体系进行光催化CO2还原反应是将半导体光催化剂均匀分散到液相中,但液相中有限的CO2溶解度和扩散速率,极大限制了光催化还原CO2反应的活性和选择性.为了提高悬浮体系的CO2还原活性,研究人员进行了一系列研究,包括开发新材料、形貌调控、复合光催化剂和用CO2饱和溶液代替纯水等.但这些改进策略对CO2还原活性的提升是有限的,仍然难以达到实际应用的要求.近年来,关于催化剂的设计和制备方面取得较大进步,但仅有极少数的研究致力于构建有效的光催化体系.实际上,光催化体系的构建与催化剂的设计和制备同样重要,因为理想的光催化CO2还原体系会使CO2反应气体与光催化剂的相互作用最大化,从而提高CO2还原反应的效率.近年来,可以建立气-液-固三相接触界面的疏水基底材料被广泛研究并应用于许多领域,包括燃料电池、光催化、电催化和有机合成等.这种独特的界面体系可以使反应气体到达反应界面并吸附在催化剂表面,从而提高了许多涉及气体的多相反应的反应速率.在传统的固-液两相体系中,气体传输通常是限制反应速率的因素,疏水基底的引入则可以很好地解决这一问题.氮化碳(g-C3N4)作为一种聚合物半导体,具有可见光响应能力,并且光生电子具有足够的还原能力满足还原CO2的需求,这使得它逐渐成为光催化CO2还原领域的明星材料.本文把g-C3N4作为光催化剂负载到疏水基底表面,构建气-液-固三相光催化体系并用于研究光催化CO2还原反应活性.以三聚氰胺为前驱体,采用化学气相沉积法在亲、疏水碳纤维纸表面生长g-C3N4光催化剂来构建新型气-液-固三相光催化体系,该体系可以增强CO2的传输和吸附能力,并形成气-液-固(CO2-H2O-光催化剂)三相反应界面,使得光催化CO2还原反应的活性和选择性显著提高.借助于疏水表面,气态物质可以连续不断地输送到光催化剂表面,而不仅依赖于溶解在液相中的微量CO2气体.因此,催化剂表面可以保持有较高的CO2和较低的H+浓度,在抑制析氢反应的同时增强CO2还原反应.研究结果表明,与亲水样品相比,疏水样品的CO2还原效率显著提高并明显抑制了析氢反应,其光催化CO2还原反应的选择性达到78.6%.另外,氧化半反应通常是光催化CO2还原反应的限制因素,会导致光生空穴的大量聚集,阻碍光生载流子的分离与传递,进而影响整体的光催化转化率.研究结果表明,使用磷酸盐溶液代替纯水进行光催化CO2还原反应性能,可以大幅提高气-液-固三相体系的光催化活性,其总体光催化CO2还原速率达到了1175.5 μmol h-1 m-2,是纯水环境下的8.8倍,CO2还原选择性为93.8%.光催化剂表面的光生空穴可以直接与溶液中的磷酸根离子发生反应,使磷酸盐反应生成过磷酸盐,以代替较难发生的产氧半反应.  相似文献   
5.
伴随着人类文明的快速发展,一些危机慢慢显露出来,例如能源危机、环境污染和全球变暖.2019年5月11日,Mauna Loa天文台报告,大气中的二氧化碳水平超过415 ppm,达到人类历史上的最高记录,欧盟随后于2019年11月宣布了气候紧急状态.因此,绿色能源技术已成为迫切需求,以减少化石燃料的使用,并减少污染物的产生.光催化是直接利用太阳能的技术,可以应用于水分解产氢、CO2还原、降解有机污染物、促进有机物合成等,是解决能源和环境问题的最有前途的技术之一.光催化剂是光催化技术的核心.目前,许多半导体材料可作为光催化剂,并已被充分地研究,例如TiO2、CdS、ZnO、BiVO4和C3N4等.然而,单一的半导体材料具有一些缺点,阻碍了它们的实际应用.其中,限制这些半导体材料光催化活性的一个关键问题是,光生电子–空穴对容易快速复合而不是参与光催化反应.例如,ZnO中激子的寿命估计仅为数百皮秒,大多数激子来不及参与到氧化还原反应中.为了抑制电子-空穴对的复合,需要应用特殊的策略.构建异质结光催化材料已成为最有前途的方法之一.通常,可以根据相邻材料的能带结构,将异质结分为以下几种类型:PN型异质结,Ⅱ型异质结,Schottky型异质结和S型异质结.以上异质结大都是由两种半导体材料复合而形成的.除此之外,还可以根据形成异质结的特殊材料,补充两种特殊的异质结类型,即晶面异质结和石墨烯基异质结.晶面异质结是由同一材料,由于暴露不同的晶面而形成的.石墨烯具有独特的能带结构、极大的比表面积及优良的导电性,可以与其他半导体形成各种类型的异质结.这些异质结材料能有效抑制电子-空穴对的复合,从而提高材料整体的光催化活性,也已成为光催化剂家族的重要分支.本文详细介绍了以上各种类型的异质结光催化剂的最新进展,概述了实现高性能异质结光催化剂的基本策略,并对异质结光催化剂未来发展方向进行了一些探讨.  相似文献   
6.
石墨相氮化碳(g-C3N4)是一种优异的产H2光催化剂,但是其存在载流子分离效率低、光吸收能力较差和比表面积小的问题。本研究通过对二氰二胺和亚甲基蓝(MB)进行热共聚合,结合后续热剥离策略,成功合成了一种新型分子内供体-受体(D-A)结构g-C3N4纳米片光催化剂。实验结果和密度泛函理论(DFT)计算表明,将亚甲基蓝掺入g-C3N4框架中扩大了光吸收范围,促进了载流子的分离。此外,热剥离增加了催化剂的比表面积且进一步促进了载流子的分离。因此,D-A结构g-C3N4纳米片显示出大幅提升的光催化产氢活性(2275.6μmol·h-1·g-1),分别是块状g-C3N4、D-A结构g-C3N4、g-C3N4纳米片的5.30,2...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号