首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   16篇
化学   16篇
  2022年   4篇
  2021年   10篇
  2020年   1篇
  2019年   1篇
排序方式: 共有16条查询结果,搜索用时 312 毫秒
1.
石墨相氮化碳(g-C_3N_4)是最具代表性的二维有机聚合物半导体材料,其具有可见光响应性能、稳定化学结构和优良的生物相容性等优点,在环境和能源领域有非常广阔的应用前景。但是,普通g-C_3N_4材料的热聚合不完全,其体相和表面的缺陷多,因此光生载流子易复合,光催化活性不高。近年来,高活性结晶氮化碳(CCN)的研究得到了国内外学者的广泛关注。本文总结了目前CCN制备及其改性方法:5种代表性制备方法,包括传统熔盐法、预热熔盐法、固态盐法、溶剂法和质子化法;4种代表性CCN的改性方法,包括缺陷引入、形貌控制、单原子修饰和材料复合。文章重点介绍了 CCN制备原理、结构特征与光催化性能。最后,对CCN的制备与改性方法进行了评价,并对其研究方向进行了展望。  相似文献   
2.
作为一种非金属聚合半导体,石墨相氮化碳(g-C3N4)具有特殊的能带结构、可见光响应能力以及优良的物理化学性质以及生产成本低等特点,因而已成为目前光催化领域的研究热点.然而,由于g-C3N4被光激发的电子与空穴极易复合,导致g-C3N4材料的光催化性能并不理想.而助剂修饰是实现光生载流子有效分离以提高光催化活性的有效途径.众所周知,贵金属Pt可以作为光催化产氢的反应位点,但高昂的成本限制了它的实际应用.所以,开发高效的非贵金属助剂很有必要.近年来,NiS作为优良的电子助剂在光催化领域受到广泛关注.大量研究表明,NiS可以作为g-C3N4的产氢活性位点用于提高其光催化产氢性能.NiS助剂主要是通过水热、煅烧和液相沉淀的方法修饰在g-C3N4的表面上.相较而言,助剂的光沉积方法具有一些独特的优势,例如节能、环保、简易并且能够实现其原位牢固地沉积在光催化剂的表面.然而g-C3N4光生电子和空穴强还原和氧化能力容易导致像Ni^2+的还原和S^2-的氧化等副反应发生,因此NiS助剂很难光沉积在g-C3N4材料表面.本文采用硫调控的光沉积法成功合成了NiS/g-C3N4光催化材料,该法利用g-C3N4在光照条件下产生的光生电子结合S以及Ni^2+生成NiS,然后原位沉积在g-C3N4表面.由于E0(S/NiS)(0.096 V)比E0(Ni^2+/Ni)(-0.23 V)更正,所以NiS优先原位沉积在g-C3N4表面.因此,硫调控的光沉积法促进了NiS的生成,并抑制了金属Ni等副反应的形成.通过X射线光电子能谱分析NiS/g-C3N4的表面化学态,表明该方法能成功地将NiS修饰在g-C3N4的表面,这也得到透射电镜和高分辨透射电镜结果的证实.光催化产氢的结果表明,NiS/g-C3N4光催化剂实现了良好的光催化性能,其最优产氢速率(244μmol h^?1 g^?1)接近于1 wt%Pt/g-C3N4(316μmol h^?1 g^?1).这是因为硫调控的光沉积法实现NiS助剂在g-C3N4表面的修饰,从而促进光生电子与空穴的有效分离,进而提高光催化制氢效率.此外,在该方法中,NiS的形成通常在g-C3N4光生电子的表面传输位点上,因此也能够使NiS提供更多的活性位点以提高界面产氢催化反应速率.电化学表征结果也进一步证明NiS/g-C3N4光催化剂加快了电子与空穴的分离和转移.更重要的是,这种简易且通用的方法还可以实现CoSx,CuSx,AgSx对g-C3N4的助剂修饰,并且都提高了g-C3N4的光催化产氢性能,表明该方法具有一定的普适性,为高效光催化材料的合成提供了新的思路.  相似文献   
3.
程蕾  张岱南  廖宇龙  范佳杰  向全军 《催化学报》2021,42(1):131-140,后插16-后插21
近年来,光催化CO2还原被视为一种既能解决能源短缺又能减少温室气体,改善人类生存环境的绿色新型技术.然而,由于CO2气体的相对稳定性,构建高催化活性和高选择性的催化体系仍然面临着巨大挑战.锌硫镉固溶体作为一种廉价的固溶类材料,具有吸光范围适宜、化学性质稳定以及能带结构可调控等特点,在光催化还原CO2的方面表现出巨大的潜力.本文发展了一种简单的原位自组装法合成三维分等级花状结构的Cd0.8Zn0.2S,主要包括Cd^2+和Zn^2+离子在含硫氛围下自组装成核状前体,然后以柠檬酸钠作为形貌诱导剂进一步组装生长,同时控制Cd2+/Zn2+摩尔比和反应时间以实现三维分等级花状Cd0.8Zn0.2S的合成.结果表明,三维分等级花状结构的Cd0.8Zn0.2S在光催化还原CO2的过程中表现出优异的催化活性和稳定性.其中,在光照3 h后,CO产量达到41.4μmol g^?1,大约是相同光照条件下Cd0.8Zn0.2S纳米颗粒的三倍(14.7μmol g^?1).此外,三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中展现出对光催化产物CO的较高选择性(89.9%),其中在没有任何牺牲剂或共催化剂作用下的TON为39.6.太赫兹时域光谱(THz-TDS)表明,这种三维分等级花状结构的Cd0.8Zn0.2S相较于Cd0.8Zn0.2S纳米颗粒更有利于对光的吸收,从而提高对光的有效利用率.原位漫反射傅立叶变化红外光谱表征分析揭示了三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中表面吸附物质以及光催化还原中间体的存在及转化.通过实验数据和理论机理预测表明,该种三维分等级花状结构的Cd0.8Zn0.2S具有较高的电流密度和较好的载流子传输能力.基于这种三维的花状结构,使得Cd0.8Zn0.2S具有较大的比表面积和吸附位点,进一步提升体系的CO2吸附性能和光生电子的转移效率,从而有效提高光催化CO2还原的活性.  相似文献   
4.
5.
环境友好型半导体光催化是当前最具前景的光催化技术之一,它不仅能够将太阳能转化为化学能以解决能源危机,还可以将污染物降解矿化从而解决环境问题.但是,传统的半导体光催化剂受限于光利用率低、光生载流子复合率高、稳定性较差等几个方面,无法达到理想的光催化效果.在半导体光催化剂上负载助催化剂是提升光催化效率的有效策略之一.负载助催化剂能够增强光生电荷在半导体与助催化剂界面间的传输,提供额外的催化活性位点,增强光捕获能力,因而被广泛应用于光催化剂的改性.目前广泛使用的贵金属助催化剂包括Au,Ag,Pt,Ru等,虽然这些贵金属助催化剂性能优异,但是它们存在储量少和成本高的问题,严重影响其规模化应用.因此,开展高效且成本低廉的非贵金属助催化剂的研究非常必要.近来,一种新型二维过渡金属材料(MXene)因其具有独特的二维层状结构、优异的导电性能、出色的光学和热力学性质而成为催化领域的研究热点.本文综述了有关非贵金属助催化剂MXene在光催化领域的最新研究进展,内容包括:(1)MXene材料的体相与表面结构特性;(2)薄层MXene的制备方法,例如氢氟酸刻蚀法、氢氟酸替代物刻蚀法以及熔融氟盐刻蚀法;(3)MXene基复合光催化剂的合成及改性策略,包括机械混合、自组装、原位氧化等;(4)MXene辅助增强光催化活性机理.论文还重点介绍了MXene作为助催化剂在光催化领域中的应用,包括光催化分解水产氢、光催化CO2还原、光催化固氮以及有机污染物的光催化降解.最后,论文分析了MXene基异质结光催化剂存在的问题与面临的挑战,并对MXene助催化剂的未来发展进行了展望.主要观点包括:(1)关于光催化分解水、空气净化、合成氨领域的研究较少,需要进一步开展;(2)MXene基异质结光催化剂的反应机理仍存在争议,需采用现代化仪器设备(包括原位表征技术)对其进行更为深入的探究;(3)目前,大多数MXene材料的制备都是通过强腐蚀性的氢氟酸或氢氟酸替代物刻蚀,开发环境友好且高效的MXene制备方法迫在眉睫;(4)阐明MXene表面终端基团的作用有助于提升MXene基复合光催化剂的性能;(5)引入新的改性策略如局域表面等离子体共振效应(LSPR)、缺陷调控、单原子催化(SAC)等来提高MXene基光催化剂的催化性能,是未来MXene基复合催化剂的发展方向.  相似文献   
6.
含有机物工业废水的处理仍然是人类实现可持续发展的重大挑战.而光催化作为一种先进的氧化环保技术,以其反应条件温和、能耗相对较低的优点在有机废水处理中受到越来越多的关注.近年来,人们设计和合成了许多不同结构和形状的光催化剂.特别是金属氧化物半导体以其适宜的能带结构、稳定的物化性质、无毒性等特点已成为光催化降解有机废水的研究热点.此外,一维纳米结构(1D)已被证实有利于光催化降解过程,其优势在于比表面积大,离子的迁移路径短,以及独特的一维电子转移轨道.尤其是TiO2纳米纤维由于其亲水性、特殊的形貌和合适的能带位置,在污染物水溶液的处理中表现出优异的光催化性能.然而,TiO2(~3.2 eV)的宽禁带、光生载流子的易复合等缺陷导致其光利用率较低,限制了其实际应用.因此,人们提出了许多提高光催化活性的策略,如掺杂金属或非金属元素、负载贵金属、构建异质结等.构建梯形(S型)异质结已被证实是提高复合材料光催化活性的一种有前途的策略.S型异质结不仅能有效地分离光生电子和空穴,而且还原能力低的半导体CB上的电子和氧化能力低的半导体VB上的空穴复合,而氧化还原能力较强的空穴和电子分别被保留.因此,这一电子转移过程赋予了复合物最大的氧化还原能力.同时,在g-C3N4中引入硫元素可以拓宽其光吸收范围,从而产生更多的光生载流子.此外,额外的表面杂质将有助于e?-h+对的分离,其光催化活性明显高于单纯的g-C3N4.综合一维纳米结构、硫掺杂和S型异质结的优势,本文采用静电纺丝和煅烧法制备了一系列硫掺杂的g-C3N4(SCN)/TiO2 S型光催化剂.制备的SCN/TiO2复合材料在光催化降解刚果红(CR)水溶液中表现出比纯TiO2和SCN更优越的光催化性能.光催化活性的显著增强是由于一维分布的纳米结构和S型异质结.此外,XPS分析和DFT计算表明,电子从SCN通过SCN/TiO2复合材料的界面转移到TiO2.在模拟太阳光照射下,界面内建电场、带边缘弯曲和库仑相互作用协同促进了复合物相对无用的电子和空穴的复合.因此,剩余的电子和空穴具有较高的还原性和氧化性,使复合材料具有最高的氧化还原能力.这些结果通过自由基捕获实验、ESR实验和XPS原位分析得到了充分的验证,说明光催化剂中的电子迁移遵循S型异质结机理.本文不仅可以丰富了新型S型异质结光催化剂的设计和制备方面的知识,并为未来解决环境污染问题提供一个有前景的策略.  相似文献   
7.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   
8.
纯相光催化材料的产氢性能主要受限于较低的电荷分离效率和缓慢的界面催化反应速率.表面负载助催化剂因其能够实现快速转移光生电子和提供界面催化活性中心被认为是促进电荷分离和提升界面催化反应的有效手段.贵金属类材料,尤其是金属铂(Pt),被认为是光催化产氢领域的理想助剂,但储量低和价格昂贵严重制约了其大规模实际应用.因此,发展低成本的产氢助剂对未来光催化产氢技术的发展至关重要.金属银(Ag)是一种优异的导电金属材料,其高电导率(6.3×107 S m–1)能够在光催化产氢反应中快速转移光生电子,从而极大地抑制光生电子-空穴对的复合.与金属Pt相比,Ag作为助剂在光催化体系中的析氢活性并不理想,这主要归因于Ag表面缺乏有效的产氢活性位点,使得界面催化产氢反应速率受到极大限制,最终表现出较低的光催化产氢活性.因此,优化Ag表面性质并提供丰富的界面产氢活性位点对于提升Ag助剂的光催化产氢活性具有重要意义.本文采用原位表面/界面工程策略对金属Ag助剂进行改性,以设计高效的Ag修饰光催化材料.首先通过一步光沉积方法制备了Ag纳米粒子修饰的TiO2光催化材料,然后,将金属Ag纳米粒子表面部分原位硒化为非晶态AgSex,成功制备了新型核壳结构Ag@AgSex助剂修饰的TiO2光催化剂(TiO2/Ag@AgSex).X射线衍射、高分辨透射电镜、X射线光电子能谱等表征结果表明,所得结构为Ag@AgSex助剂的核壳结构.光催化结果表明,TiO2/Ag@AgSex光催化剂具有比TiO2和TiO2/Ag更高的光催化产氢速率,其中TiO2/Ag@AgSex(20μL)表现出最高的光催化产氢速率,是TiO2/Ag样品的2.4倍.结合原位X射线光电子能谱和密度泛函理论计算结果认为,TiO2/Ag@AgSex光催化剂的高效产氢活性可以归因于金属Ag核和非晶AgSex壳的协同机制,即具有优良导电性的金属Ag核可以有效且快速地转移光生电子,而非晶态AgSex壳可以提供大量的产氢活性中心,最终实现高效的电荷分离效率和快速的界面催化反应,显著提升TiO2的光催化产氢活性.综上,本文为构建高效的Ag改性光催化剂以及开发经济高效的太阳能转换助催化剂提供了新的思路.  相似文献   
9.
铂单原子作为一种新型催化剂,具有活性组分高度分散、配位未饱和以及原子利用率高等特点,在光催化还原CO2方面表现出巨大潜力.但是由于成本高昂和负载量高等因素,极大地限制了其在实际生产中的广泛应用.合成具有低负载量贵金属铂,同时提高铂基单原子催化剂的催化活性仍然是一项巨大挑战.晶化石墨相氮化碳的二维结构,特别是其稳定晶化结构所形成的限域环境及其可扩展的π共轭单元,可以有效锚定金属单原子,因而可作为金属单原子的良好载体.已有的金属单原子载体氮化碳多为弱晶或非晶结构,基于晶化氮化碳的高结晶度和高结构稳定性,合理构建金属单原子沉积的结晶石墨相氮化碳体系仍十分困难.关于晶化氮化碳负载金属单原子催化剂应用于光催化还原CO2的研究至今鲜有报道.本文开发了一种具有低负载量的铂基双单原子锚定晶化氮化碳的制备方法,通过设计氮化碳缺陷位点,在晶化石墨相氮化碳载体表面构筑氮缺陷位点,利用载体的丰富氮缺陷作为陷阱,有效捕获双单原子金属前驱体,成功制备了具有低负载量(铂为0.32wt%)的双金属铜铂单原子催化剂,并用于光催化CO2还原反应中.结果表明,相比于单原子铂催化剂和单原子铜催化剂,该种双单原子铜铂体系在光催化还原CO2-CO中表现了更好催化活性.在光照3.5 h后,铜铂双单原子体系的CO产量达到41.1μmolg-1.除此之外,铜铂双单原子体系在光催化过程中有利于促进CH4生成,在没有任何牺牲剂或共催化剂作用下其CH4的产量为9.8μmolg-1,其产率分别是相同光照条件下单原子铂催化剂(3.2μmolg-1)和单原子铜催化剂(2.0μmol g-1)的三倍和五倍.高分辨透射电镜结果表明,制备的氮化碳呈现了高度晶化的结构.球差扫描透射电子显微镜结果表明,铂和铜物种分别以高度分散的单原子形式存在,且在双金属铜铂单原子体系并未发现铜颗粒和铂颗粒.电化学分析结果表明,通过双配位活性位点的桥梁作用提高光生电子的转移效率,使得铜铂双单原子体系具有更高的电流密度和更好的载流子传输能力.原位X射线光电子能谱结果表明,金属铂和铜单原子成功负载在晶化石墨相氮化碳上,且在光照过程中单原子铂和铜的结合能的电子密度有些许改变,证明了该双金属单原子体系在光催化过程中协同动态光电子的迁移转移;原位红外傅里叶变换光谱实验结果表明,这种稳定的铜铂双单原子体系有利于促进催化还原反应中中间体产物的加氢过程,对终产物的解离和释放有明显的促进作用,从而提高光催化还原CO2反应的活性和选择性.  相似文献   
10.
高结晶氮化碳空心球的制备及其增强光催化产氢活性   总被引:2,自引:0,他引:2  
李阳  张岱南  范佳杰  向全军 《催化学报》2021,42(4):627-636,中插43-中插47
石墨烯型氮化碳(g-C3N4)已经成为解决环境污染和能源危机问题的较为理想的光催化剂,但由于其较低的比表面积和较高的光生载流子重组效率而表现出较弱的光催化活性.因此,研究者们已经提出了许多策略,例如纳米结构设计,杂原子掺杂和增加结晶度,用来克服氮化碳的这些缺点,从而提高其光催化性能.其中,引起了较多关注的是增加g-C3N4的结晶度,因为晶化g-C3N4(CCN)的内层堆积密度高,外层结构缺陷少,可以提供更快的光生载流子迁移效率,从而增加参与光催化反应的光生电子和空穴.即便如此,通过常规方法制备的晶化g-C3N4依然显示出不规则的形貌和较低的比表面积.基于此,本文以氰尿酸-三聚氰胺(CM)超分子自组装混合物作为前驱体,通过熔盐法成功地制备了高结晶度的g-C3N4空心球(CCNHS).采用XRD、FTIR、13C固相CP-MAS NMR、XPS和时间分辨PL谱对CCNHS样品的基本性质进行了表征,并通过SEM、HRTEM、氮吸附-脱附和紫外-可见DRS光谱对CCNHS样品的形貌结构进行了表征.结果表明,CCNHS样品呈现出由纳米棒组成的非常规则的空心球结构,因而表现出比传统CCN样品更大的比表面积以及更强的光利用效率.CCNHS样品XRD谱出现晶化氮化碳的特征峰;其HRTEM照片出现了对应晶化氮化碳的0.33 nm晶格条纹;FFT衍射斑点的出现以及光吸收能力的增强进一步证明了CCNHS样品结晶度的提高.XPS谱元素分析以及EPR谱结果表明,CCNHS样品中还存在有利于提高光生电子转移的氮空位.光电流、阻抗谱以及与三嗪晶化氮化碳的对比结果证明,CCNHS样品中存在内在电场.同时,采用具有一定毒性的双酚A增塑剂替代了从粮食中提取出来的传统醇类牺牲剂,既保证了对有毒污染物的降解,也减少了粮食的浪费.即使以难降解的双酚A作为牺牲剂,CCNHS样品在降解双酚A(降解率为21%)的同时,依然表现出较好的光催化产氢活性(151.2μmol·h?1·g?1).本文为超分子自组装的结构优化以及晶化氮化碳的改善提供了新视角.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号