首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
壳多糖与丙烯酸丁酯的乳液接枝共聚研究   总被引:10,自引:0,他引:10  
以十二烷基苯磺酸钠为乳化剂,过硫酸钾-亚硫酸氢钠为引发剂,研究了壳多糖与丙烯酸丁醋的乳液共聚合,结果表明当[K2S2O8]=[NaHSO3]=2.57×10-3mol·1-1,[BA]=0.68mol.1-1,[Chitosan]=19.2g·l-1,在70℃下反应5小时,共聚反应的接技率和接枝效率均较高.用红外光谱,差热分析,X射线衍射,扫描电镜对接技共聚物进行了表征,此外测试了共聚物胶乳成膜的机械性能,表明用丙烯酸丁酯对壳多糖进行接枝改性,可提高壳多糖的韧性,扩大其应用范围.  相似文献   

2.
不饱和多原子C2H3自由基在碳氢化合物燃烧过程中起着非常重要的作用,其各种基元反应影响整个燃烧过程的速率和形成的产物[1-3].Gutman和合作者[6]测量了总包反应在室温的速率常数((1. 06±0. 21) ×10-11cm3· molecule-1· s-1),仅检测到HCO和H2CO两个反应产物,Slagle和合作者[7]使用光电离质谱法研究了温度在299-1005 K范围内,宏观反应的Arrhen-nius表达式 k=(6. 92±0. 17)×10-12exp((120±12)/ T) cm…  相似文献   

3.
研究了在35±0.1℃、离子强度0.5mol/L(KCl)条件下,甲酸根、乙酸根、丙酸根和丁酸根分别催化Cu(Ⅱ)离子与四溴化间-四(N-乙酸甲酯基-3-吡啶基)卟啉(H2TB-N-ACMSpyPBr4)的反应动力学及其机理,该类反应对卟啉和Cu(Ⅱ)离子均为一级反应,反应动力学方程为:d[Cup4+]/dt=k{(1.0+b[A-])/(1.0+K3,4·[H+]2)}[Cu2+][p]T,在甲酸-甲酸根缓冲体系中,k=2.98mol-1dm3·sec-1,b=154×102mol-2,dm6·sec-1,K3,4=6.928×103;在乙酸-乙酸根缓冲体系中,k=3.42mol-1·dm3·sec-1,b=2.29×103mol-2·dm6·sec-1,K3,4=6.928×103;在丙酸-丙酸根缓冲体系中,k=3.00mol-1·dm3·sec-1,b=5.90×102mol-2·dm6·sec-1,K3,4=7.007×103;在丁酸-丁酸根缓冲体系中,k=3.14mol-1·dm3·sec-1,b=3.75×102mol-2·dm6·sec-1,K3,4=6.921×103;讨论了有机酸根的碱性与  相似文献   

4.
在不同的温度下,考察了六氰合铁(Ⅱ)配阴离子[Fe(CN)6]4-还原trans-[Co(en)2(ImH)2]3+的反应动力学。结果表明,反应遵循H.Taube所提出的外配位界电子传递机理。在25℃,I=0.5mol·L-1,trans-[Co(en)2(ImH)2]3+/[Fe(CN)6]4-反应体系的前驱配合物离子对形成常数为Q1p=98.9mol-1·L,电子转换速率常数为Ket=1.3×10-4s-1,电子转移过程活化焓ΔH≠et和活化熵ΔS≠et分别为141.2kJ·mol-1、573.5J·mol-1·K-1。  相似文献   

5.
用紫外-可见光谱对氧化剂PhIO、H_2O_2和空气对μ-氧代双四苯基卟吩合锰([TPP·Mn(Ⅲ)]_2O)的氧化过程进行监测,揭示了[TPPMn(Ⅲ)]_2O在不同氧化剂作用下具有不同的反应过程。研究了8种取代μ-氧双四苯基卟吩合锰{[TXPPMn(Ⅲ)]_2O,X=p-(i-Pr),p-CH_3,p-Cl,p-F,p-OCH_3,H,m-Cl,o-Cl}与H_2O_2反应中的取代基效应和溶剂效应。结果表明:上述反应为卟啉环上的吸电子基所促进;且反应速率随着反应溶剂的亲核性能的增加而增加。  相似文献   

6.
何荣桓  王建华 《分析化学》1995,23(10):1197-1200
本提出了协同铲应补偿的动力两次标准加入法,讨论了相互干扰双组份同时测定的原理,研究了钙(Ⅵ)和钨(Ⅵ)催化的H2O2-I^-动力学反应,确定了同时测定条件:[H2O2]=9.×10^-3mol/L,[I^-]=1.0×10mol/L,PH3.0,25℃;为补偿钼和钨之间的协同催化效化效应,引入了协同催化系数的概念,有效地消除了吸江度对加和性的偏离。用本法同时测定样品中的钼和钨含量,回收率分别为9  相似文献   

7.
研究了无水硫化钠与对二氯苯(以N-甲基吡咯烷酮为溶剂)合成聚苯硫醚反应的宏观动力学,该反应是一个小分子缩合串联自缩聚的过程,通过测定不同反应聚合体系中氯化钠的徨成率和硫化内的转化率,建立了该反应的宏观动力学方程:1/(1-PNaCl+PNa2s)=C0Kt+1;并计算得到220、250℃的表观反应速率为4.5×10^-4和3.0×10^-3kg/(mol.s),表观活化能为134kJ/mol。  相似文献   

8.
用分光光度法于293±1K温度下测定了由二价阳离子Cu(2+)和高价阴离子(CTS)(4-)(3,6-二磺酸根-1,8-二羟基萘酚)形成配阴离子Cu(CTS)(2-)在乙醇-水混合溶剂中的稳定常数随离子强度的变化.溶剂中乙醇的重量百分数分别为0、10、20、30、40和50;每个混合溶剂中的离子强度均为0.1-3.0mol·dm(-3).分别用推广的Debye-Huckel方程[1]和Pitzer方程[2]计算了配离子的热力学稳定常数.发现对本体系Debye-Huckel方程完全不能适用,而基于Pitzer方程的多项式逼近法[3]则可得到满意的结果.简单讨论了介质效应和配位反应的标准迁移自由能.  相似文献   

9.
研究了在35±0.1℃、离子强度0.5mol/L(KCl)条件下,甲酸根、乙酸根、丙酸根和丁酸根分别催化Cu(Ⅱ)离子与四溴化间-四(N-乙酸甲酯基-3-吡啶基)卟啉(H2Tβ-N-ACMspyPBr4)的反应动力学及其机理,该类反应对卟啉和Cu(Ⅱ)离子均为一级反应,反应动力学方程为:d[CuP^4+]/dt=k{1.0+b[A^-])/(1.0+K3,4.[H^+]^2}[Cu^2+][P]T  相似文献   

10.
系统地研究了异丙氧基稀土催化D.L-两交酯(LA)开环聚合的规律.实验表明:在甲苯溶剂中,异丙氧基稀土对D.L-丙交酯聚合有较高的催化活性,可获得较高的分子量(Mη=4.0×104)不同稀土元素的活性次序如下:La>Nd>Dy>Y.异丙氧基稀土催化D·L-两支酯聚合的合适条件为:[LA]=1.95mol/l,[Ln(O-i-Pr)3]=6.5×10-3mol/l,甲苯,90℃,聚合反应速度与单体和催化剂浓度均成一级关系,聚合反应表现活化能为着67.7kJ/mol.  相似文献   

11.
采用填加SiO_2增强的甲基乙烯基硅橡胶混炼压片。通过~(60)Co-γ射线引发辐射硫化,利用共辐照方法,将N-乙烯基吡咯烷酮接枝到该硅橡胶上,制备了高纯度医用水凝胶。本文较系统地研究了接枝单体浓度、辐照剂量率、剂量、温度和接枝试片厚度等因素对接枝共聚反应的影响。建立了接枝速率与单体浓度、剂量率之间的动力学关系式:R_g=k[M]~(4/5)D~(1/2)。讨论了反应机制和接枝区域。  相似文献   

12.
The effects of radicals on silica surface, which were formed by γ‐ray irradiation, on the polymerization of vinyl monomers were investigated. It was found that the polymerization of styrene was remarkably retarded in the presence of γ‐ray‐irradiated silica above 60 °C, at which thermal polymerization of styrene is readily initiated. During the polymerization, a part of polystyrene formed was grafted onto the silica surface but percentage of grafting was very small. On the other hand, no retardation of the polymerization of styrene was observed in the presence of γ‐ray‐irradiated silica below 50 °C; the polymerization tends to accelerate and polystyrene was grafted onto the silica surface. Poly(vinyl acetate) and poly(methyl methacrylate) (MMA) were also grafted onto the surface during the polymerization in the presence of γ‐ray‐irradiated silica. The grafting of polymers onto the silica surface was confirmed by thermal decomposition GC‐MS. It was considered that at lower temperature, the grafting based on the propagation of polystyrene from surface radical (“grafting from” mechanism) preferentially proceeded. On the contrary, at higher temperature, the coupling reaction of propagating polymer radicals with surface radicals (“grafting onto” mechanism) proceeded to give relatively higher molecular weight polymer‐grafted silica. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2972–2979, 2006  相似文献   

13.
Methyl acrylate (MA), vinyl acetate (VAc) and their binary mixture (MA + VAc) have been graft copolymerized onto poly(vinyl alcohol) using γ-rays as initiator by mutual radiation method in aqueous medium. The optimum conditions for affording maximum grafting have been evaluated. The percentage of grafting has been determined as a function of total dose, concentrations of poly(vinyl alcohol), MA, VAc, and their binary mixture. Rate of grafting (Rp) and induction period (Ip) have been determined as a function of total initial mixed monomer concentration and concentration of poly(vinyl alcohol). The graft copolymer has been characterized by thermogravimetric method. The effect of donor monomer (vinyl acetate) on percent grafting of acceptor monomer (methyl acrylate) has been explained.  相似文献   

14.
The effective grafting of vinyl polymers onto an ultrafine silica surface was successfully achieved by the photopolymerization of vinyl monomers initiated by the system consisting of trichloroacetyl groups on the surface with Mn2(CO)10 under UV irradiation at 25 °C. The introduction of trichloroacetyl groups onto the surface of silica was achieved by the reaction of trichloroacetyl isocyanate with surface amino groups, which were introduced by the treatment of silica with 3‐aminopropyltriethoxysilane. During the polymerization, the corresponding polymers were effectively grafted onto the surface, based on the propagation of polymer from surface radicals formed by the interaction of trichloroacetyl groups and Mn2(CO)10. The percentage of poly(methyl methacrylate) grafting onto the silica reached 714.6% after 90 min. The grafting efficiency (proportion of grafted polymer to total polymer formed) in the polymerization of methyl methacrylate was very high, about 80%, indicating the depression of formation of ungrafted polymer. Polymer‐grafted silica gave a stable colloidal dispersion in good solvents for grafted polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2157–2163, 2001  相似文献   

15.
Radiation-induced copolymer grafting of acenaphthylene and maleic anhydride onto polyethylene or EVA film in the vapor phase was carried out and the effect of comonomer sorption on the grafting was studied. When polyethylene film was used as a backbone polymer, the sorption of the binary monomers during the grafting increased linearly as the grafting reaction proceeded. The marked increase was probably caused by the formation of a grafted layer. Particularly, the sorption of maleic anhydride was brought about by the existence of a grafted layer. In grafting onto EVA film, the content of maleic anhddride in the grafted copolymer increased with the increasing content of vinyl acetate in EVA. Continuous measurements of sorption of the comonomers onto EVA and grafted EVA films were carried out by use of an electrobalance. The distinctive feature of the sorption was that the equilibrium sorption of acenaphthylene or maleic anhydride onto the grafted EVA film increased and the diffusion constants for both comonomers decreased markedly with increasing percentage of graft. The copolymer grafting was explained from these results by assuming that the monomer molecules are supplied to the propagating chain ends mostly through a sorbed state on the polymer film.  相似文献   

16.
Successful grafting of 2(2-hydroxy-5-vinylphenyl)2H-benzotriazole onto saturated aliphatic C? H groups of polymers has been accomplished. When the grafting reaction was carried out in chlorobenzene at 150–160°C with di-tertiary butylperoxide as the grafting initiator, grafts as high as 20–30% at grafting efficiencies of 50 and 80% have readily been obtained. It was very important to carry out the grafting reaction in tubes sealed under high vacuum since trace amounts of oxygen cause complete inhibition of the grafting reaction by the phenolic monomer. Grafting reactions were carried out on a variety of different polymers including atactic polypropylene, ethylene/vinyl acetate copolymer, poly(methyl methacrylate), poly(butyl acrylate), and polycarbonate.  相似文献   

17.
In order to ascertain the effect of a donor monomer, vinyl acetate (VAc), on the graft copolymerization of acceptor monomers, ethyl acrylate (EA) and butyl acrylate (BA), grafting of mixed vinyl monomers (EA + VAc) and (BA + VAc) was carried out on Himachali wool in aqueous medium using ceric ammonium nitrate (CAN) as a redox initiator. Graft copolymerization was carried out at different temperatures for various reaction periods. Percent grafting and percent efficiency were determined as functions of 1) concentration of mixed vinyl monomers, 2) concentration of CAN, 3) concentration of HNO3 4) temperature, and 5) reaction time. VAc, the donor monomer, was found to decrease percent grafting of EA and BA onto wool.  相似文献   

18.
Vapor-phase graft copolymerizations of acenaphthylene–maleimide or acenaphthylene–maleic anhydride binary solid monomers onto poly(ethylene-co-vinyl acetate) films were carried out under ultraviolet irradiation. The extent of sorption of single or binary monomers increased with the increasing vinyl acetate content in the backbone polymers. The sorbed binary monomers were mainly composed of acenaphthylene, but the maleimide or maleic anhydride fraction increased with the increasing vinyl acetate content of the films and the composition was little affected by surface hydrolysis. In all series of graft polymerization of single or binary monomers the overall extent of grafting increased with the vinyl acetate content and was suppressed by the surface hydrolysis of the backbone film. The composition of the grafted copolymer, however, differed markedly, depending on the combination of binary monomers. The grafted copolymer in the acenaphthylene–maleimide system was composed mainly of acenaphthylene units, whereas that in the acenaphthylene–maleic anhydride system was composed mainly of maleic anhydride units. The results were compared with those of γ-ray grafting, and it was suggested that the contribution of a direct supply of monomers from vapor phase and the existence of an acetoxy group on the surface of the film should play an important role in the grafting reaction.  相似文献   

19.
Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.  相似文献   

20.
It is a common view that poly(vinyl acetate) has many branches at the acetyl side group, but that the corresponding poly(vinyl alcohol) has little branching. In order to study the branching in poly(vinyl acetate) and poly(vinyl alcohol) which is formed by chain transfer to polymer, the polymerization of 14C-labeled vinyl acetate in the presence of crosslinked poly(vinyl acetate), which was able to be decrosslinked to give soluble polymers, was investigated at 60°C and 0°C. This system made it possible to separate as well as to distinguish the graft polymer from the newly polymerized homopolymer. Furthermore, the degree of grafting onto the acetoxymethyl group and onto the main chain were estimated. It became clear that, in the polymerization of vinyl acetate, chain transfer to the polymer main chain takes place about 2.4 times as frequently at 60°C as that to the acetoxy group and about 4.8 times as frequently at 0°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号