首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 231 毫秒
1.
取铋矿石试样(0.500 0g),用抗坏血酸0.5g和1mol·L~(-1)盐酸溶液50mL,于25℃振荡提取30min,经致密滤纸过滤。取其滤液制成含20%(体积分数,下同)盐酸的试液100.0mL,用电感耦合等离子体原子发射光谱法(ICP-AES)测定其中的氧化矿铋的含量。将上述过滤中的滤纸及其不溶物用盐酸羟胺0.5g和50%盐酸溶液25mL于100℃水浴中浸取1h后,加水25mL并过滤,取其滤液制成含20%盐酸的试液100.0mL,用ICP-AES测定其中的辉铋矿铋。将上述过滤后所得滤纸及其不溶物移入瓷坩埚中,升温至800℃灰化2h。冷却后,将坩埚中的不溶物用盐酸-硝酸-水(3+1+2)混合酸20mL加热溶解并蒸缩至约10mL,加入20%盐酸溶液10mL并定容至50.0mL,用原子荧光光度计(AFS)测定其中自然铋矿铋的含量。另取铋矿石样品0.500 0g,用上述混合酸20mL加热溶解并蒸缩至约10mL,加入20%盐酸溶液20mL,并定容至100.0mL,用ICP-AES测定其全铋量。ICP-AES校准曲线的线性范围在10.00mg·L~(-1)以内,铋的检出限(3S/N)为3.0μg·g~(-1)。用所提出方法和常用的比色法对3个样品中的全铋、氧化矿铋和辉铋矿铋分别进行测定,两种方法所得结果相互一致。  相似文献   

2.
采用高压密闭酸溶溶解锑矿石,用电感耦合等离子体原子发射光谱法(ICP-AES)测定锑矿石中As、Sb、Al、Fe、Ca、Mg、K、Na、Ti、Mn等10种元素的含量。在装有0.10 g样品的消解内罐中依次加入体积比为3∶1的盐酸-硝酸混合溶液1 mL和氢氟酸2 mL,在150℃烘箱中保温24 h。取出内罐,在电热板上以150℃蒸发至近干。加入体积比为3∶1的盐酸-硝酸混合溶液0.5 mL再次蒸发至干,此步骤重复一次。加入体积比为1∶3∶4的硝酸-盐酸-水混合溶液5 mL,在烘箱中130℃加热3 h。用体积比为1∶3∶36的硝酸-盐酸-水混合溶液定容至100 mL,按照优化的ICP-AES仪器工作条件测定。结果显示:10种元素的质量浓度均在一定范围内与其对应光谱响应值呈线性关系,检出限(3s)为1.98~77.20μg·g~(-1);按照试验方法分析4种标准物质,所得相对误差为-2.8%~10%;对2种标准物质平行测定12次,测定值的相对标准偏差(RSD)为0.25%~6.6%。  相似文献   

3.
建立了四酸微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中6种重金属元素的方法。取0.10~0.20 g土壤样品用少量水润湿,加入6 mL硝酸、2 mL盐酸、1 mL氢氟酸和1 mL 30%(质量分数,下同)过氧化氢溶液,静置15 min使其充分反应,置于微波消解仪中按升温程序消解。消解液置于电热板上以140℃加热至溶液近干,用1%(体积分数)硝酸溶液溶解残渣并将其定容至25 mL,按优化的ICP-AES条件分析。所选的Pb、As、Ni、Cu、Zn、Cr的分析谱线分别为220.353,189.042,231.604,327.396,213.856,267.716 nm。结果显示:6种元素的质量浓度分别在1.00 mg·L~(-1)(Pb、As、Cu、Ni)内和2.00 mg·L~(-1)(Cr、Zn)内与其对应的光谱响应值呈线性关系,检出限(3s)为0.29~5.76μg·L~(-1);对标准样品进行6次重复测定,测定值的相对标准偏差为0.60%~2.6%,测定值与认定值基本一致。  相似文献   

4.
称取0.250 0g样品置于聚四氟乙烯坩埚中,加几滴水润湿样品,加入1.5mL硝酸、1.5mL盐酸、3mL氢氟酸和1mL高氯酸,盖上坩埚盖,置于排风橱中,放置过夜。将聚四氟乙烯坩埚放置于控温电热板上,于190~210℃加热,蒸发至白烟冒尽,关闭电源,然后加入5mL盐酸(1+1)溶液,加入2滴过氧化氢,在电热板上利用余温加热至固体盐类完全溶解,继续加热5~10min至溶液清亮,冷却后将溶液用水定容至25.0mL,静置3h后用电感耦合等离子体原子发射光谱法同时测定样品溶液中硫、铍、铈、钴、铜、锂、锰、镍、钪、镧、钒、锌、镁、钙、钾、钠和铁等17种元素。17种元素的质量浓度在一定范围内与其发射强度呈线性关系,检出限在0.02~50μg·g~(-1)之间。方法用于土壤国家标准物质中上述17种元素的测定,结果与认定值相符,测定值的相对标准偏差(n=12)小于4.0%。  相似文献   

5.
锑矿石样品(0.100 0g)加入盐酸-硝酸(3+1)混合酸5 mL,氢氟酸5 mL,高氯酸0.5mL和硫酸(1+1)溶液1mL的混酸体系,加热(200℃)分解,蒸发至近干时,冷却,加入盐酸-硝酸-水(3+1+4)混合酸10mL,加热至盐类完全溶解,冷却,用盐酸-硝酸-水(3+1+36)混合液稀释至50mL。此溶液可供电感耦合等离子体原子发射光谱法同时测定14种元素,并选择了合适的分析谱线。部分微量元素分析谱线的光谱干扰,运用背景扣除或干扰元素校正系数法等予以校准。测得各元素的检出限[3s×500(稀释因子)]为0.81~123μg·g-1。按上述方法测定CRM(GBW07174),其相对标准偏差(n=11)为0.51%~7.1%。  相似文献   

6.
选择电感耦合等离子体质谱法测定地球化学样品中50种元素的含量。取0.100 0g样品,置于高压密闭消解罐的聚四氟乙烯(PTFE)内胆中,加入氢氟酸3mL及硝酸1mL,放入密闭钢套中,拧紧。在150℃下消解2h,待冷却降压后取出内胆,加入高氯酸0.25mL,于150℃加热蒸发至白烟冒尽。加入硝酸1mL和水1mL,将内胆置于钢套中,于150℃再次密闭消解12h。自然冷却,将内胆中溶液转移至PTFE比色管中,加水定容至10.0 mL,摇匀。分取此母液1.00mL,置于10mL PTFE比色管中,用约φ2.2%硝酸溶液稀释至10.0mL,保持溶液中硝酸浓度在3%左右。此溶液用于测定(S1组)Li、Be、V等28种元素和(S2组)Sc、Y、La等16种元素。另取母液1.00mL,置于10mL PTFE比色管中,加入φ10%氢氟酸溶液2滴,500g·L~(-1)的酒石酸溶液1.0mL,用约φ2.5%硝酸溶液稀释至10.0mL,摇匀。此溶液供测定(S3组)Ti、Zr、Nb等6种元素。对质谱干扰较严重的被测元素分别建立了11个校准方程用于校准相关测定数据。用所提出方法分析了6种地球化学国家一级标准物质(GBW 07359,GBW 07360,GBW 07361,GBW07408,GBW 07427,GBW 07446),对其中与本方法有关的50种元素进行测定,所得结果与认定值相符,达到了地质矿产实验室测试质量规范的要求。  相似文献   

7.
提出了用电感耦合等离子体原子发射光谱法(ICP-AES)测定70钛铁中共存的8种杂质元素(锰、磷、铜、铬、镍、钼、钒、铝)。试验表明:试样宜用浓盐酸3mL及浓硝酸3mL溶解,且在制作工作曲线时应加入相同量的酸溶解基体金属(即所加入的纯铁粉和纯钛粉),所选用的8种元素的分析谱线均为检出限低、且光谱干扰小或易于扣除者。制作工作曲线时采用基体匹配法,从而消除基体干扰,方法中8种元素的检出限(3s/b)在0.002~0.02mg·mL-1范围内。按所提出方法分析了一个70钛铁标样(YSBC15602),共测定了11次,上述8种元素的测定结果与已知值相符,测定值的相对标准偏差(n=11)在0.74%~4.11%范围内。  相似文献   

8.
提出了高压密闭消解-氢化物发生原子荧光光谱法测定农作物中硒含量的方法。粮食类样品(干样)去除杂物后,用水洗净,于60℃烘干;蔬菜类样品(鲜样)用水洗净,晾干,取可食用部分,制成匀浆。取上述样品0.5000 g置于高压密闭聚四氟乙烯(PTFE)内罐中,加入8 mL硝酸和2 mL 30%(质量分数)过氧化氢溶液,混匀过夜,于150℃密封消解4 h。冷却至室温后,于150℃赶酸至约1 mL,加入50%(体积分数)盐酸溶液5 mL,于150℃继续保持加热至溶液无色清亮并伴有白烟冒出。冷却后转移至10 mL容量瓶中,加入100 g·L^(-1)铁氰化钾溶液2.5 mL,用水定容。所得溶液在硒高性能空心阴极灯电流为80 mA,载气流量为300 mL·min^(-1),屏蔽气流量为700 mL·min^(-1)的条件下,采用氢化物发生原子荧光光谱法测定其中硒的含量。结果表明,硒的质量浓度在100μg·L^(-1)以内与对应的荧光强度呈线性关系,检出限(3s)为0.001 mg·kg^(-1)。方法用于国家标准物质分析,测定值的相对标准偏差(n=12)为2.3%~7.1%,相对误差为-6.7%~9.7%。方法还用于实际样品分析,所得测定结果与国家标准GB 5009.93-2017基本一致。  相似文献   

9.
高钛型钒渣样品1.000 0 g置于250 mL烧杯中,用水5 mL冲洗杯壁并分散样品,加入氢氟酸2.5 mL、盐酸15 mL和硝酸5 mL,加热煮沸反应至溶液产生均匀大气泡。加入硫酸(1+1)溶液5 mL,高温加热至产生三氧化硫浓白烟雾并保持3~5 min。冷却后,加入水15 mL煮沸,冷却至室温,用水定容至100 mL。采用电感耦合等离子体原子发射光谱法(ICP-AES)测定所得溶液中0.001%~3.0%(质量分数)的铬和0.001%~0.300%(质量分数)的钴、镍、镓、钪、锆的含量。采用基体匹配和同步背景校正相结合方式消除基体组分影响,并且选择了待测元素的分析谱线、背景校正区域以及光谱仪工作参数等检测条件。各元素检出限(3s)为0.000 1%~0.000 2%,相对标准偏差(n=8)均小于25%。样品的本法测定结果与ICP-MS的测定结果一致。  相似文献   

10.
采用电感耦合等离子体原子发射光谱法(ICP-AES)测定Ni-Cr-Fe-Nb合金中Mo、Co、Cu、Mn、Ti等5种微量元素。并对样品溶解方法,基体和共存元素的影响进行了研究。当样品溶液为2.5 mg/mL时,方法标准加入回收率在98.0%~104.5%之间,相对标准偏差10%(n=6)。  相似文献   

11.
锰矿样品在密闭的消解罐中用盐酸、硝酸、过氧化氢及氢氟酸在微波消解仪中进行消解,所得溶液移入聚四氟乙烯容量瓶中,加水定容至100mL供电感耦合等离子体原子发射光谱法分析用。此方法中不采用加入硼酸络合过剩的氢氟酸,以避免因加入硼酸而引起的干扰。为抵消基体干扰,在制备标准曲线时于各试液中加入一定量的锰(Ⅱ)溶液。选择测定铝、镁及磷的分析谱线依次为396.152,280.270,185.942nm。应用此方法分析了2件锰矿标准物质,测得上述3种元素的测定结果与认定值相符,测定值的相对标准偏差(n=11)在0.63%~1.18%之间。  相似文献   

12.
称取镍基单晶高温合金0.100 0g于聚四氟乙烯烧杯中,先令其与盐酸9mL和硝酸1mL加热反应,待反应缓慢时滴加氢氟酸2mL并继续加热使样品完全溶解。加入500g·L^-1酒石酸溶液2mL,冷却至室温,在塑料容量瓶中加水定容至100.0mL。按仪器工作条件采用电感耦合等离子体原子发射光谱法测定其中5种合金元素(Mo、W、Ta、Re、Ru)的含量,选择分析谱线依次为204.598,207.911,240.063,197.312,240.272nm。结果发现:除了Re外,其余4种元素的测定中均受共存元素的光谱干扰,严重影响了测定结果的准确性。为克服其干扰,除了采用基体匹配法消除镍的基体干扰外,试验采用混合校正系数矩阵法对测定结果进行校准。通过一系列试验计算得到混合校准系数矩阵K,并应用于模拟样品的分析。结果表明:经过矩阵K的校准,所测定的5种元素的准确度显著提高,达到了消除共存元素之间光谱干扰的目的。通过精密度试验,测得上述5种元素测定值的相对标准偏差(n=11)均在1.5%以下,并通过标准加入法进行回收试验,测得5种元素的回收率为97.0%~105%。  相似文献   

13.
采用硫脲络合–火焰原子吸收光谱法测定低硅铝合金中的银元素含量。实验探讨了酸度及硫脲用量对银测定的影响及铝合金中基体元素与共存元素对银元素分析线的干扰情况。结果表明:选用9%的盐酸和3%的硝酸溶解试样最好,加入5 mL 50 g/L硫脲溶液可消除氯离子对试验结果的影响,基体铝元素和其它共存元素不干扰银的测定。根据低硅铝合金中银元素的含量范围,合成系列标准溶液,建立工作曲线,工作曲线的线性范围为0.05%~0.50%。银元素含量为0.30%的样品测定结果的相对标准偏差为0.15%(n=8),标准加入回收率为96.8%~98.5%。该方法操作简便、重现性好、测量结果准确可靠。  相似文献   

14.
建立了ICP-AES法测定红土镍矿中Ni;Ca;Ti;Mn;Cu;Co;Cr;Zn和P含量的方法。样品用HCl、HNO3溶解,加入HF和HClO4,加热至HClO4烟冒尽,用HCl溶解盐类,过滤,采用ICP-AES法同时测定滤液中Ni、Ca、Mn、Cu、Co、Zn、P;残渣经灼烧、挥硅、K2S2O7熔融、HCl浸取,所得溶液与滤液合并,测定溶液中Cr和Ti含量。方法检出限:P为0.022μg/mL,其它元素在0.0032~0.0085μg/mL之间,方法的精密度(n=7)在1.4%~2.9%之间。分析结果与分光光度法、XRF法和AAS法分析结果的相对误差:Ni、Cu、Co、Cr小于5%,Ti和Mn小于10%,Zn小于15%,Ca和P小于19%。  相似文献   

15.
通过样品处理、干扰试验、方法检出限、准确性和精密度试验,确定了最佳实验条件,建立了电感耦合等离子体-原子发射光谱法测定铜磁铁矿中铜、锰、铝、钙、镁、钛和磷含量的方法。试料经盐酸、硝酸、氢氟酸、高氯酸分解,用盐酸溶解盐类,过滤,采用电感耦合等离子体发射光谱法同时测定滤液中铜、锰、铝、钙、镁、钛和磷量。方法检出限:锰、钛和磷小于0.00085%,其它元素小于0.0054%,分析结果与分光光度法、XRF法和AAS法分析结果一致,8个实验室对5个水平样品进行协同试验给出了方法的精密度。  相似文献   

16.
建立了电感耦合等离子体原子发射光谱(ICP-AES)法同时测定硫化物矿石中Cu、Pb、Zn三种元素的方法,取代了传统的四酸(HCl+HNO3+HClO4+HF)溶样法,采用简单的盐酸和硝酸溶解矿石,大大缩短了分析时间。选择干扰少且灵敏度高的谱线作为待测元素的分析谱线,采用左右两点扣背景的方法校正光谱干扰和基体匹配方法消除物理干扰,用GBW07162和GBW07163等不同种类的国家一级标准物质进行精密度和准确度实验,测定结果的相对标准偏差都在10%以内,测定结果都在标准值的误差范围内,符合地质矿产开发的要求。  相似文献   

17.
A method is described for the determination of cobalt, molybdenum and vanadium in mineral water samples by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) after separation of these elements from the matrix by ion exchange. The samples are acidified with concentrated hydrochloric acid (10 ml/l) and the elements are adsorbed as thiocyanate complexes. Elution is performed with a mixture 2M in perchloric acid and 1M in hydrochloric acid and subsequently with 1M hydrochloric acid. After evaporation of the eluates and dissolution of the residue the volume of the measuring solution for ICP-AES is 10 ml. The recoveries for Co, Mo and V at a concentration level of 1 g/1 in mineral waters were approximately 99%. A concentration factor of 100 is achieved by this procedure.  相似文献   

18.
应用电感耦合等离子体发射光谱法测定锌精矿中的铟,确定了最佳工作条件,选择了最佳分析谱线,并利用标准加入法和基体匹配法验证了方法的准确性。样品用氟化氢铵、盐酸、硝酸、高氯酸溶样,用盐酸定容。结果表明,电感耦合等离子体发射光谱法与萃取分离盐酸羟胺示波极谱法测定的铟含量结果一致。方法准确,快速,加标回收率为99.6%~101.7%,相对标准偏差为0.97%~2.1%。  相似文献   

19.
建立电感耦合等离子体发射质谱法测定钨矿石中钨华的含量。用氨水溶液对矿石样品进行浸取分离,将浸取液稀释10倍体积后测定,以3%盐酸溶液作为测定介质。WO3的质量浓度在0~100 ng/m L范围内与信号强度呈良好的线性关系,相关系数为0.999 9,方法检出限为0.5 ng/m L。用该方法对5个钨矿石样品和2个标准物质样品中的钨华进行测定,测定结果的相对标准偏差为2.15%~9.46%(n=12),且与经典方法极谱法测定结果的相对偏差小于10%。该方法快速、简便,精确度较高,可用于钨矿石中钨华的测定。  相似文献   

20.
应用电感耦合等离子体原子发射光谱(ICP-AES)法对球化剂中镧、铈、钇进行测定,通过硝酸、氢氟酸和盐酸分解试料,高氯酸冒烟驱走硅和氟,最后用盐酸溶解盐类,能准确、快速地测定其含量,加标回收率在97%~100%,精密度实验取得了满意的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号