首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磷酸锰锂(LiMnPO4)正极材料具有能量密度高、成本低、安全性高和热稳定性好等优点,目前已成为锂电产业界研究的热点,有望成为继磷酸铁锂(LiFePO4)之后的新一代正极材料. 然而,磷酸锰锂的电子电导率和锂离子扩散率均很低,其电化学性能提高较为困难,至今尚无法制备出满足实际应用的高性能LiMnPO4正极材料,严重制约了LiMnPO4材料及其电池的发展. 本文从LiMnPO4的结构特性出发,对近年来国内外在碳包覆、离子掺杂、纳米化和控制晶体形貌等改性研究、全电池研究、专利情况以及商业化尝试等多方面进行了综述,并对LiMnPO4的发展进行了展望.  相似文献   

2.
采用喷雾干燥与高温煅烧相结合的方法制备了球形LiTi2(PO4)3/C复合水系负极材料, 探讨了基于不同包覆机制的有机碳源和碳包覆量对LiTi2(PO4)3/C复合负极电化学性能的影响. 结果表明, 碳包覆量过低时不足以阻止水的侵蚀, 而碳含量过高时锂离子扩散的阻力过大, 磷酸钛锂电极最优碳包覆质量分数为13%. 碳包覆的均匀性和包覆层厚度是影响电极性能的两个重要因素. 基于原位聚合包覆机制的聚多巴胺包覆磷酸钛锂颗粒最均匀, 碳化后微晶结构较好, 具有良好的电子导电性, 以聚多巴胺为碳源制备的LiTi2(PO4)3/C复合负极性能最优.  相似文献   

3.
采用葡萄糖水热碳化法合成了一系列碳层包覆的NiFe2O4核壳八面体(NiFe2O4@C). 通过调控葡萄糖的含量可以有效控制NiFe2O4表面包覆的碳层厚度. 利用X射线衍射(XRD)、 拉曼光谱(Roman)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-Vis DRS)等对NiFe2O4@C的组成、 结构、 形貌和光学性能进行了表征. 考察了表面水热碳层对NiFe2O4光催化降解亚甲基蓝(MB)性能的影响. 结果表明, NiFe2O4的光催化活性很大程度上依赖于在其表面包覆的碳层厚度, 碳层厚度为5.5 nm的NiFe2O4@C-3展现了最佳的光催化活性. 荧光光谱(PL)、 瞬态光电流和电化学阻抗谱(EIS)表征结果证明, NiFe2O4@C的光催化性能的提升归因于在NiFe2O4核和碳壳之间形成了异质结, 有效地促进了光生载流子的传输和分离效率. NiFe2O4@C复合材料展现了较好的稳定性和可回收性, 在污水处理方面有很大的应用潜力.  相似文献   

4.
车海英  杨军  吴凯  王久林  努丽燕娜 《化学学报》2011,69(11):1287-1292
系统研究了电解质锂盐对磷酸铁锂电极高温性能的影响, 并探讨了相关的作用机理. 差示扫描量热仪测试显示, 与LiPF6相比, 二(三氟甲基磺酰)亚胺锂(LiTFSI)和LiBF4具有对水份稳定且热稳定性好的优点, 更适合高温条件下使用. 应用等离子体发射光谱考察LiFePO4在55 ℃和不同电解液体系中铁离子溶出程度, 结果表明, 在LiTFSI和无氟锂盐电解液中LiFePO4的铁很少溶出, 而在LiPF6电解液中却溶出严重, 且FePO4的铁溶出量高于LiFePO4. 循环伏安和光学显微镜测试结果显示少量LiBF4的加入能有效抑制LiTFSI对集流体铝箔的腐蚀. 以LiTFSI和LiBF4作为混合锂盐配成的电解液能显著改善LiFePO4/Li电池的高温电化学性能, 在55 ℃和1 C倍率下循环40次后放电比容量达147.7 mAh/g.  相似文献   

5.
本文采用磷酸铁工艺路线制备碳包覆的磷酸铁锂(LiFePO4/C)复合正极材料,系统考察气流粉碎分级过程对LiFePO4/C正极材料及全电池性能的影响. 研究表明:分级前磷酸铁锂颗粒粒度较大,中值粒径为17.37μm,呈规整球形形貌,具有较高的振实密度和碳含量;分级后球形被打碎,振实减小. 全电池测试结果显示:分级过程对全电池的容量、交流内阻、直流内阻、功率密度的影响较小;但分级前电芯的低温放电容量保持率和550周的高温循环保持率分别60.1%和87.5%,明显优于分级后的49.5%和84.7%. 分级前碳层能均匀包覆在磷酸铁锂表面形成均匀导电网络,而分级过程将磷酸铁锂的碳层有一定的剥离和破坏导致性能下降.  相似文献   

6.
通过高温热分解法制备了碳包覆氟化亚铁纳米复合材料(FeF2/C), 并对其结构、 形貌及电化学性能进行了研究. 结果表明, 该方法对FeF2实现了碳包覆, 且形成部分碳化铁(Fe3C). 电化学性能测试结果表明, 该材料在0.1C倍率下循环100周后的放电比容量达到246.7 mA·h/g, 相比于第2周的容量保持率高达93.6%, 具有良好的循环稳定性.  相似文献   

7.
以具有高比表面积、分级孔结构和优良导电性的碳纳米笼(CNCs)为载体,制得了粒子尺寸为10~25 nm且高度分散的LiFePO4/CNCs复合物.以LiFePO4/CNCs复合物作为锂离子电池的正极材料,在0.1 C倍率下首次放电比容量达到163 mAh·g-1,15 C和30 C倍率下的放电比容量可达96和75 mAh·g-1;在15 C倍率下循环200圈后,其放电比容量仍保持在92 mAh·g-1,显著优于LiFePO4/CNTs复合物.这些结果表明,LiFePO4/CNCs复合物具有优异的倍率性能和循环稳定性,是一种性能优良的锂离子电池正极材料,其性能源自CNCs载体的高比表面积、分级孔结构和优异导电性以及LiFePO4颗粒的纳米化和高结晶度.  相似文献   

8.
合成了一种腈基功能化有机硅化合物3-氰乙基-二乙氧基-甲基硅烷(DESCN), 并对其化学结构和电化学窗口进行了表征. 采用恒流充放电、 扫描电子显微镜(SEM)、 X射线光电子能谱(XPS)及电化学阻抗谱(EIS)等方法研究了DESCN添加剂对LiFePO4电池低温性能的影响. 结果表明, DESCN化合物能够在电极表面参与形成更薄、 更均匀且致密的固体电解质界面(SEI)膜, 抑制电解液副反应的发生, 减小界面膜阻抗, 有利于低温下电极/电解液界面的Li+扩散和电荷转移, 从而提高LiFePO4电池的低温性能.  相似文献   

9.
胡晨  金翼  朱少青  徐晔  水江澜 《应用化学》2020,37(4):380-386
LiFePO4电极材料具有比容量高、工作电压稳定、成本低及环境友好等优点,被视为理想的锂离子电池正极材料,是目前电动汽车主要正极材料之一。 然而在低温下LiFePO4电池性能显著降低,限制了其在冬季和高寒地区中的使用。 研究人员分析了低温下磷酸铁锂电池性能快速下降的原因,并提出解决办法。 本文概述了提高磷酸铁锂电池低温性能的4个方法:1)脉冲电流;2)电解液添加剂;3)表面包覆;4)体相掺杂。  相似文献   

10.
常照荣  刘瑶  汤宏伟  赵海丽  黄静 《化学学报》2011,69(21):2632-2636
采用二甲亚砜水溶液为反应介质, 在常压和108 ℃条件下, 经短时间的液相反应直接制备出橄榄石结构的纳米级LiFePO4. IR分析表明, 液相法直接制得的LiFePO4晶体结构中含有少量的Fe3+. 将液相直接制备的样品与少量葡萄糖混合后在600 ℃下焙烧3 h得到类球形的LiFePO4/C材料. 电化学测试结果表明, 这种纳米级LiFePO4/C材料在0.2 C 倍率下放电容量达到157.2 mAh/g, 并且具有较好的放电平台. 5 C和10 C放电容量仍能达到126.1和103.4 mAh/g, 且循环200次后容量没有明显衰减, 表现出优异的倍率放电特性和循环性能.  相似文献   

11.
徐嘉  王艳艳  王蕊  王博  潘越  曹殿学  王贵领 《电化学》2013,19(2):189-192
本文以壳聚糖单体为碳源兼凝胶剂,利用溶胶-凝胶煅烧合成了锂离子电池LiFePO4/C正极材料,使用XRD和SEM对合成的材料进行表征. 用恒电流充放电测试了LiFePO4/C电极的电化学性能,当壳聚糖单体与LiFePO4摩尔比为1:1.2时,600 oC煅烧的LiFePO4/C电极性能最佳,其粒径分布均匀(200 ~ 400 nm),该电极0.2C倍率放电比容量为155 mAh.g-1,30周期循环放电比容量仍保持152 mAh.g-1,库仑效率为97.9 %.  相似文献   

12.
尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)因制备成本低、 放电平台高及循环寿命长等优点, 越来越多地应用于大型储能设备、 能量转换设备、 动力汽车等领域. 然而LiNi0.5Mn1.5O4在高电压(5 V)充电状态下电解液易分解, 从而导致比容量降低以及循环性能衰退. 针对以上问题, 采用水热法制备磷酸钐(SmPO4)表面包覆改性LiNi0.5Mn1.5O4正极材料, 研究了SmPO4包覆量对LiNi0.5Mn1.5O4材料电化学性能的影响. 结果表明, 当SmPO4包覆量为0.5%(质量分数)时, 改性材料(LNMO@SP-0.5)的电化学性能最优, 在0.2C和5C倍率下的放电比容量分别为129.2和90.9 mA?h/g, 而未包覆的材料Pristine LNMO的放电比容量分别仅有114.2和77.7 mA?h/g. 在常温1C倍率下循环200次后, LNMO@SP-0.5的容量保持率为93.4%, 而Pristine LNMO的容量保持率仅为86.6%. 这归因于SmPO4包覆能够有效缓解LiNi0.5Mn1.5O4材料与电解液之间的副反应, 降低电极的极化程度和电荷转移电阻, 增加了Li+的扩散系数.  相似文献   

13.
采用纳米三氧化二铝(Al2O3)对富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2进行表面均匀包覆, 并考察了最优纳米Al2O3包覆量下材料的电化学性能. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米Al2O3对富锂锰基正极材料表面均匀包覆, X射线衍射分析(XRD)结果表明包覆后富锂材料依然具有良好的层状结构. 恒流充/放电循环测试发现, 包覆后的Li1.2Ni0.13Co0.13Mn0.54O2材料的首次放电比容量为249.7 mA·h/g, 循环100次后的容量保持率为89.5%, 与未包覆的Li1.2Ni0.13Co0.13Mn0.54O2材料相比, 容量保持率提升约13%. 循环伏安(CV)和电化学阻抗(EIS)测试结果表明, 纳米Al2O3包覆可有效抑制材料极化, 降低界面阻抗和电荷转移阻抗, 进而提升富锂锰基正极材料的电化学性能.  相似文献   

14.
以葡萄糖作为碳源,通过简单的水热反应获得菱形碳包覆碳酸钴(CoCO3/C)复合材料,并研究了其作为锂离子电池负极材料的电化学性能.晶型和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,用热重-差热分析法(TG-DTA)来测试CoCO3/C材料中碳的含量,用拉曼光谱分析无定型碳的存在. Barrett-Joyner-Halenda (BJH)则用来分析材料的孔径分布情况.实验表明,碳包覆不仅在CoCO3颗粒表面包覆了一层无定性碳,使得CoCO3材料在充放电过程中保持结构的稳定性,也形成了一些大约30 nm左右的介孔,这种孔的存在有助于电解液中离子的传输,从而提高材料的电化学性能.电极材料在0.90C(1.00C = 450 mAh•g-1)倍率下进行循环测试, 500次后的容量仍保持在539 mAh•g-1,显示出了较好的循环性能.当增加到3.00C倍率时CoCO3/C容量为130 mAh•g-1,再恢复到0.15C倍率时容量依然能够达到770 mAh•g-1,表现出了CoCO3/C具有良好的稳定性.  相似文献   

15.
本文通过封装与包覆结构共同作用抑制多级孔Fe3O4在循环过程中的体积膨胀,提高Fe3O4电极材料的电化学性能。通过采用硬模板法将葡萄糖和尿素作为造孔剂合成具有多级孔结构的Fe3O4材料,再利用醛脂包覆系统在多级孔Fe3O4上均匀的包覆一层碳材料,随后使用氢化工程对体积膨胀率仅为~4%的TiO2进行氢化处理并提高TiO2的导电率,将氢化TiO2作为封装材料对碳包覆多级孔Fe3O4进行封装处理,制备出具有三维网络传输结构的H-TiO2-C-Fe3O4电极材料。结果表明,封装与包覆结构较好的缓解了H-TiO2-CFe3O4电极材料在充放电过程中的体积膨胀,在0.2 A·g...  相似文献   

16.
锂离子电池正极材料的晶体结构及电化学性能   总被引:6,自引:0,他引:6  
正极材料是锂离子电池的重要组成部分。作为提供自由脱嵌锂离子的正极材料,其晶体结构的特点决定了锂离子脱嵌路径方式的不同,并对锂离子电池的电化学性能等产生明显影响。本文根据正极材料的晶体结构和锂离子“脱嵌/嵌入”路径方式的不同,重点讨论了一维隧道结构、二维层状结构和三维框架结构正极材料的晶体结构特点、锂离子“脱嵌/嵌入”路径和其电化学性能之间的关系,主要包括一维隧道结构正极材料LiFePO4,二维层状结构正极材料LiMO2(M=Co, Ni, Mn)、Li1+xV3O8和Li2MSiO4 (M=Fe, Mn) 以及三维框架结构正极材料LiMn2O4和Li3V2(PO4)3。揭示了目前锂离子电池正极材料的研究现状和存在问题,并对今后的发展方向进行了评述。  相似文献   

17.
采用溶胶-凝胶法合成Al掺杂富锂锰基Li1.2Mn0.54-xAlxNi0.13Co0.13O2x=0、0.03)锂离子电池正极材料,之后采用一步液相法制备Li2WO4包覆层,系统地研究了Al掺杂和Li2WO4包覆双效改性对富锂锰基正极材料电化学性能的影响.结果表明,Al掺杂后明显提升富锂锰基正极材料的循环稳定性,包覆层Li2WO4明显改善其倍率性能和放电平台电压衰减问题.Li2WO4包覆量为5% Li1.2Mn0.51Al0.03Ni0.13Co0.13O2正极材料在2.0~4.8 V充放电电压区间及1000 mA·g-1电流密度下比容量仍高达110 mAh·g-1左右,同时在100 mA·g-1的电流密度下循环300次容量保持率为78%,而且循环过程中放电平台电压衰减也明显减缓.该工作为解决锂离子电池富锂锰基正极材料循环稳定性和平台电压衰减提供了新的思路.  相似文献   

18.
采用溶液浸渍法制备了聚乙烯醇(PVA)均匀包覆的石墨并研究了其微观形貌及电化学性能. 以LiNi0.8Co0.15Al0.05O2(NCA)为正极材料、 PVA包覆石墨为负极材料组装成软包电池和钢壳电池, 研究了PVA功能保护膜对全电池的电化学性能和存储寿命的影响. 结果表明, 存储过程中PVA功能保护膜可以有效抑制电解液和石墨内嵌锂反应的发生, 延长电池的存储寿命.  相似文献   

19.
王玉乐  杨柯利  高艳芳 《应用化学》2022,39(11):1716-1725
采用硅酸四乙酯、钼酸铵和蔗糖分别作为硅源、钼源和碳源,通过溶胶?凝胶法制备了碳包覆二氧化硅(SiO2)和碳化钼(Mo2C)颗粒的SiO2/Mo2C/C复合物,并借助X射线衍射仪、透射电子显微镜等仪器对复合物的物相组成、形貌结构等进行了表征测试,同时研究了复合物作为锂离子电池负极材料的电化学性能。结果表明,当硅酸四乙酯、钼酸铵和蔗糖的质量比为3∶1∶2(记为SiO2/Mo2C/C 2)用作锂离子电池的负极材料时具有较好的电化学性能。在电流密度为100 mA/g,首次充电和放电比容量分别为662和896 mA·h/g,经过200次循环后,可逆容量仍可达625 mA·h/g。即使在2 A/g的大电流密度下,可逆容量仍可达272 mA·h/g。该复合材料表现出良好的倍率性能和循环稳定性,这主要归因于Mo2C具有良好的稳定性和较高的导电性,提高了SiO2的导电性,同时碳包覆层可以保护核心材料直接与电解液反应生成副产物,还可以作为缓冲层减缓SiO2的体积膨胀,因此在进行充放电的过程中,材料的电化学性能得到显著的提升。在此提出利用过渡金属碳化物改善SiO2导电性和循环性能的新思想,可以为其它负极材料的改性提供新的研究思路并扩宽研究方向。  相似文献   

20.
通过金属有机物分解法(MOD)协同光电化学沉积法, 将p型氧化物半导体CuBi2O4沉积在BiVO4纳米薄膜上, 形成包覆性异质结结构, 制备了一种新型p-n异质结光阳极n-BiVO4/p-CuBi2O4, 用于太阳能光电化学(Photoelectrochemical, PEC)水分解. 研究结果表明, 在1.23 V(vs. RHE)电势下, BiVO4/CuBi2O4 异质结光阳极表现出优良的PEC水氧化性能, 光电流密度达到2.8 mA/cm2, 负载磷酸钴(Co-Pi)的BiVO4/CuBi2O4/Co-Pi光电极, 光电流密度达到4.45 mA/cm2, 分别为BiVO4电极光电流密度的3.1倍和4.9倍. X射线衍射(XRD)、 紫外-可见吸收光谱(UV-Vis)、 电化学阻抗谱(EIS)和能级结构图等结果也证实, BiVO4/CuBi2O4和BiVO4/CuBi2O4/Co-Pi复合电极材料在内建电场和能带弯曲作用下, 光吸收特性增强, 载流子界面转移电阻减小, 具有良好的光电化学性能与稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号