首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
卢岳  葛杨  隋曼龄 《化学学报》2021,79(3):344-352
本工作实验对比了可见光以及紫外光辐照下甲氨碘化铅(CH3NH3PbI3即MAPbI3)基钙钛矿太阳能电池器件性能及微结构演变特征差异. 结果表明可见光辐照下钙钛矿太阳能电池器件中MAPbI3层发生降解的同时, 伴随着Au元素从金属电极一侧向MAPbI3和电子传输层SnO2的界面处迁移现象. 但相较于紫外光, 可见光辐照下器件中Au元素的迁移速率慢30倍左右. 这是由于器件电子传输层SnO2具有较低的价带顶位置(–8.4 eV), 它吸收紫外光激发出强氧化性的空穴h+, 氧化碘离子I生成I原子. 而I原子会对金属电极层产生较大的破坏作用, 促进Au+离子的形成. 因此可见光辐照下, 尽管器件开路电压Voc一直保持较高的数值, 但是Au元素的迁移以及钙钛矿层的分解, 会引起短路电流密度Jsc的快速降低. 本文为钙钛矿太阳能电池光照不稳定性的机理解释, 提供了全新的理论依据.  相似文献   

2.
采用含有羧基、氨基和苯基等多官能团的氨基酸衍生物分子(Fmoc-L-异亮氨酸,Fmoc-Ile-OH)钝化钙钛矿薄膜表面缺陷。首先,该氨基酸衍生物可降低钙钛矿薄膜中PbI2杂质含量,并提高钙钛矿薄膜的颗粒尺寸。其次,氨基酸衍生物的引入可有效改善钙钛矿薄膜的光学特性和钙钛矿/电荷传输层界面载流子输运性能。另外,经钝化处理的钙钛矿太阳能电池表现出更优的器件二极管理想因子、更低的陷阱填充极限电压和更高的载流子复合电阻,这些结果证实了Fmoc-Ile-OH可有效钝化钙钛矿薄膜表面缺陷。最后,通过工艺条件优化,制得了转化效率为21.09%的高效钙钛矿太阳能电池器件,其性能远优于对照组器件的效率(18.00%)。  相似文献   

3.
在平面型钙钛矿太阳能电池中常采用SnO2作为电子传输层材料,相应的SnO2薄膜常采用溶液旋涂法制备。但是由于前驱液中的纳米颗粒可能会发生部分团聚、基底和溶液难以完全避免灰尘等杂质颗粒混入,且最佳的SnO2电子传输层的厚度通常仅有约20 nm,所以这种方法制备的电子传输层难以保证严格致密和无纳米针孔。在本工作中,我们报道了一种电泳沉积制备致密SnO2薄膜的方法,并用其有效地提高了钙钛矿太阳能电池的光电转换效率和工况稳定性。通过电泳法,表面带负电荷的SnO2纳米颗粒在电场的作用下沉积到氧化铟锡(ITO)阳极表面,这种方法得到的薄膜比旋涂法制备的更为致密。将其应用于n-i-p结构的钙钛矿太阳能电池中,能够使得暗电流降低并抑制载流子的非辐射复合,从而提高电池的短路电流和开路电压,进而实现更高的光电转换效率(从18.17%提高到19.52%),且能消除迟滞效应。更重要的是,长期工况稳定性测试表明基于电泳-旋涂法制备的器件在1个太阳的光照下、最大功率点处连续工作960 h后,仍然能够保持71%的初始效率;然而基于旋涂法制备的器件在工作100 h后即降低到初始效率的70%。本工作提供了一种全新的SnO2电子传输层的制备方法,显著地提高了器件性能和工况稳定性,后续有望应用于制备大面积器件和电池模组。  相似文献   

4.
近年来, 有机-无机杂化铅卤化物钙钛矿太阳能电池(PSCs)得到了迅猛发展, 其最高光电转换效率已经达到19.3%. 该类型太阳能电池使用的钙钛矿型吸光材料为含Pb的有机-无机杂化铅卤钙钛矿, 从长远来看,Pb的毒性将制约其大规模应用. 本文从减少吸光材料中Pb的含量出发, 尝试用Sr 部分取代Pb制备一系列少铅钙钛矿CH3NH3SrxPb(1-x)I3, 并将其应用于钙钛矿太阳能电池进行光电性能的研究. 研究结果表明, 相比于全Pb 钙钛矿(CH3NH3PbI3)材料, Sr 取代量为30% (x=0.3)时, 所形成的CH3NH3Sr0.3Pb0.7I3光谱吸收大范围增强,但基于此材料制备的电池器件性能明显下降.  相似文献   

5.
卢岳  葛杨  隋曼龄 《物理化学学报》2022,38(5):2007088-86
随着光伏产业的不断发展,有机无机杂化钙钛矿太阳能电池的研发成为科学与工业界广泛关注的焦点。到目前为止,其光电转换效率已经提高到了25.2%,成为替代硅基太阳能电池的核心方案之一。然而,钙钛矿太阳能电池的稳定性较差,容易受到环境中氧气、水分、温度甚至光照的影响,这严重制约了其大规模推广与应用。大量科学研究表明,如何避免紫外辐照下有机无机杂化钙钛矿太阳能电池的性能衰减,对于提高钙钛矿太阳能电池的光照稳定性至关重要。然而到目前为止,仍然没有系统的工作来对紫外辐照下钙钛矿太阳能电池性能以及微结构演化过程进行详细的表征与分析。本文中,我们利用聚焦离子束-扫描电子显微分析(FIB-SEM)以及球差校正透射电子显微分析(TEM)等技术,全面地研究了紫外辐照过程中有机无机杂化钙钛矿太阳能电池性能变化规律以及电池微结构演化特征。实验结果表明,紫外辐照过程中太阳能电池内部会形成0.5–0.6 V的内建电场,钙钛矿中的I-离子在电场的驱动下向金属Au电极和空穴传输层2, 2’, 7, 7’-四[N, N-二(4-甲氧基苯基)氨基]-9, 9'-螺二芴(Spiro-OMeTAD)一侧迁移;随后,空穴传输层与金电极的界面处,碘离子与光生空穴一起与金电极发生反应,将金属态Au氧化成离子态Au+。而Au+离子则在内建电场的驱动下反向迁移穿过钙钛矿MAPbI3层,直接被SnO2和MAPbI3界面处的电子还原形成金属Au纳米团簇。除此之外,紫外辐照过程中钙钛矿太阳能电池性能降低的同时,往往伴随着Spiro-OMeTAD与钙钛矿界面处物质迁移、钙钛矿薄膜内晶界展宽以及Au纳米颗粒周围MAPbI3物相分解等现象。以上各种因素的协同作用,共同导致了紫外光照下有机无机杂化钙钛矿太阳能电池光电转换性能(PCE)、开路电压(Voc)以及短路电流(Jsc)等性能参数的急剧下降。  相似文献   

6.
通过光阳极协同包覆的策略抑制Zn?Cu?In?Se(ZCISe)量子点敏化太阳能电池(QDSC)中光阳极/电解液界面上的电荷复合过程,提高电荷收集效率和电池光伏性能。采用溶液法在ZCISe量子点敏化的光阳极表面依次沉积包覆ZnS和SiO2双钝化层,实现较单一ZnS包覆层更有效的界面电荷复合抑制作用,从而提高QDSC的性能。在包覆ZnS/SiO2双钝化层后,所组装的ZCISe QDSC光电转换效率由传统单一ZnS包覆的12.17%提高到13.23%,这归因于双钝化层对光阳极/电解液界面电荷复合过程的有效抑制,电荷收集效率得到相应提升。  相似文献   

7.
王蕾  周勤  黄禹琼  张宝  冯亚青 《化学进展》2020,32(1):119-132
近年来,新兴起的有机无机杂化钙钛矿太阳能电池突飞猛进,在短短十年里其光电转化效率从3.8%迅速发展到目前25.2%的认证效率,被视为最具有应用潜力的新型高效率太阳能电池之一。虽然钙钛矿太阳能电池具有很高的光电转换效率已与多晶硅薄膜电池相媲美,但是电池的长期稳定性仍是阻碍其商业化的一大挑战。钙钛矿表面和晶界存在大量的缺陷,界面钝化来提高钙钛矿太阳能电池的稳定性是非常重要且有效的策略。二维钙钛矿材料是有机胺层与无机层交替的层状钙钛矿,具有体积较大的有机铵阳离子,与传统的三维钙钛矿材料相比对于环境的稳定性较好,并且结构灵活可调,在三维钙钛矿表面修饰二维钙钛矿层钝化缺陷,在提高钙钛矿太阳能电池效率的同时又保证了稳定性,另外,合适的钝化剂分子也能够非常有效地钝化缺陷。本文总结了钙钛矿太阳能电池的不稳定因素,归纳了钙钛矿太阳能电池界面钝化方面的研究进展,指出了二维钙钛矿材料发展的巨大潜力以及寻找合适钝化剂分子的原则,期望能够为获得高性能的钙钛矿太阳能电池进而实现商业化提供有益的指导。  相似文献   

8.
钙钛矿太阳能电池以其高效、低成本的特点备受关注。到目前为止,钙钛矿太阳能电池的最高光电转换效率已经超过25%,显示出良好的应用前景。钙钛矿薄膜的结晶性能是决定器件性能的关键,因此,调控钙钛矿薄膜的生长过程至关重要。本工作中,我们发现通过简单调节前驱体溶剂,即调节二甲基亚砜:1,4-丁内酯:N,N-二甲基甲酰胺(DMSO:GBL:DMF)的三种混合溶剂的比例,可实现钙钛矿薄膜中PbI2和PbI2(DMSO)含量的调节,从而调节电池的器件性能。此外,本工作系统研究了PbI2和PbI2(DMSO)的含量对器件性能的影响。结果表明,PbI2(DMSO)的形成会导致300–425nm波长范围内电池的外量子效率(EQE)降低,从而导致器件性能下降。相反,通过在前驱体溶液中添加额外的碘化亚甲基铵(MAI),可以抑制PbI2和PbI2(DMSO)的形成。  相似文献   

9.
目前钙钛矿太阳能电池的认证效率已达25.2%,被认为是下一代最有希望的薄膜太阳能电池候选者。但通过溶液加工方法制备的钙钛矿薄膜不可控的形貌与较差的结晶性是制约器件稳定性提升和大面积生产的主要原因。为了有效解决这一难题,研究者们通常在电荷传输层与钙钛矿层之间进行界面修饰。本文从界面修饰的角度出发,总结了不同界面修饰策略在钙钛矿太阳能电池中的应用,并展望了界面修饰在低成本和大面积钙钛矿太阳能电池的应用前景。  相似文献   

10.
钙钛矿太阳能电池以其高效、低成本的特点备受关注。到目前为止,钙钛矿太阳能电池的最高光电转换效率已经超过25%,显示出良好的应用前景。钙钛矿薄膜的结晶性能是决定器件性能的关键,因此,调控钙钛矿薄膜的生长过程至关重要。本工作中,我们发现通过简单调节前驱体溶剂,即调节二甲基亚砜:1, 4-丁内酯: N, N-二甲基甲酰胺(DMSO : GBL : DMF)的三种混合溶剂的比例,可实现钙钛矿薄膜中PbI2和PbI2(DMSO)含量的调节,从而调节电池的器件性能。此外,本工作系统研究了PbI2和PbI2(DMSO)的含量对器件性能的影响。结果表明,PbI2(DMSO)的形成会导致300–425 nm波长范围内电池的外量子效率(EQE)降低,从而导致器件性能下降。相反,通过在前驱体溶液中添加额外的碘化亚甲基铵(MAI),可以抑制PbI2和PbI2(DMSO)的形成。  相似文献   

11.
Current density-voltage(J-V) hysteresis issue caused by unbalanced charge transport has greatly limited the improvement of power conversion efficiency(PCE) of halide perovskite solar cells(PSCs). Herein, hollow TiO2 mesoporous electron transport layer(ETL) was used to fabricate PSCs. The structure-dependent charge collection as well as its effect on PCE and hysteresis impactor(HI) of PSC were investigated. The results demonstrate that TiO2 hollow spheres in a size of around 50 nm (HS-50) can form a high quality perovskite/ETL interface with a less trap density. Moreover, the hollow TiO2 with the thin shell can help promote the extraction of electrons from perovskite layer to ETL, so as to reduce the charge accumulation and recombination at the perovskite/ETL interface and alleviate the hysteresis behavior. As a result, PSCs with HS-50 TiO2 delivered a champion PCE of 16.81% with a small HI of 0.0297, indicating a better performance than the commercial P25(PCE of 15.87%, HI of 0.2571).  相似文献   

12.
Mesoporous scaffold structures have played great roles in halide perovskite solar cells(PSCs),due to the excellent photovoltaic performance and commercial perspective of mesoporous PSCs.Here,we reported a mixed-phase TiO2 mesoporous film as an efficient electron transport layer(ETL)for mesoporous perovskite solar cells.Due to the improved crystal phase,fihn thickness and nanopartMe size of TiO2 layer,which were controlled by varying the one-step hydrothermal reaction time and annealing time,the PSCs exhibited an outstanding short circuit photocurrent density of 25.27 mA/cm^2,and a maximum power conversion efficiency(PCE)of 19.87%.It is found that the ultra-high Jsc attributes to the excellent film quality,light capturing and excellent electron transport ability of mixed-phase TiO2 mesoporous film.The results indicate that mix-phase mesoporous metal oxide fihns could be a promising candidate for producing effective ETLs and high efficiency PSCs.  相似文献   

13.
The performances of electron-transport-layer (ETL)-free perovskite solar cells (PSCs) are still inferior to ETL-containing devices. This is mainly due to severe interfacial charge recombination occurring at the transparent conducting oxide (TCO)/perovskite interface, where the photo-injected electrons in the TCO can travel back to recombine with holes in the perovskite layer. Herein, we demonstrate for the first time that a non-annealed, insulating, amorphous metal oxyhydroxide, atomic-scale thin interlayer (ca. 3 nm) between the TCO and perovskite facilitates electron tunneling and suppresses the interfacial charge recombination. This largely reduced the interfacial charge recombination loss and achieved a record efficiency of 21.1 % for n-i-p structured ETL-free PSCs, outperforming their ETL-containing metal oxide counterparts (18.7 %), as well as narrowing the efficiency gap with high-efficiency PSCs employing highly crystalline TiO2 ETLs.  相似文献   

14.
The matching of charge transport layer and photoactive layer is critical in solar energy conversion devices, especially for planar perovskite solar cells based on the SnO2 electron‐transfer layer (ETL) owing to its unmatched photogenerated electron and hole extraction rates. Graphdiyne (GDY) with multi‐roles has been incorporated to maximize the matching between SnO2 and perovskite regarding electron extraction rate optimization and interface engineering towards both perovskite crystallization process and subsequent photovoltaic service duration. The GDY doped SnO2 layer has fourfold improved electron mobility due to freshly formed C?O σ bond and more facilitated band alignment. The enhanced hydrophobicity inhibits heterogeneous perovskite nucleation, contributing to a high‐quality film with diminished grain boundaries and lower defect density. Also, the interfacial passivation of Pb?I anti‐site defects has been demonstrated via GDY introduction.  相似文献   

15.
Interfacial charge collection efficiency has demonstrated significant effects on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, crystalline phase‐dependent charge collection is investigated by using rutile and anatase TiO2 electron transport layer (ETL) to fabricate PSCs. The results show that rutile TiO2 ETL enhances the extraction and transportation of electrons to FTO and reduces the recombination, thanks to its better conductivity and improved interface with the CH3NH3PbI3 (MAPbI3) layer. Moreover, this may be also attributed to the fact that rutile TiO2 has better match with perovskite grains, and less trap density. As a result, comparing with anatase TiO2 ETL, MAPbI3 PSCs with rutile TiO2 ETL delivers significantly enhanced performance with a champion PCE of 20.9 % and a large open circuit voltage (VOC) of 1.17 V.  相似文献   

16.
The perovskite solar cells (PSCs) with high efficiency and stability are in great demand for commercial applications. Although the remarkable photovoltaic feature of perovskite layer plays a great role in improving the PCE of PSCs, the inevitable defects and poor stability of perovskite, etc. are the bottleneck and restrict the commercialization of PSCs. Herein, a review provides a strategy of applying aggregation-induced emission (AIE) molecules, containing passivation functional groups and distinct AIE character, which serves as the alternative materials for fabricating high-efficiency and high-stability PSCs. The methods of introducing AIE molecules to PSCs are also summarized, including additive engineering, interfacial engineering, hole transport materials and so on. In addition, the functions of AIE molecule are discussed, such as defects passivation, morphology modulation, well-matched energy level, enhanced stability, hole transport ability, carrier recombination suppression. Finally, the detailed functions of AIE molecules are offered and further research trend for high performance PSCs based on AIE materials is proposed.  相似文献   

17.
碳量子点(CQDs)是一类粒径较小,光学性能显著,且电荷传输性能优异的类半导体纳米材料,在钙钛矿太阳能电池的性能调控和改善中得到广泛的应用。从CQDs纳米材料的合成、性能及应用出发,综述了CQDs纳米材料在钙钛矿太阳能光电器件中电子传输层、钙钛矿光吸收层和空穴传输层等方面的应用进展,并展望了该类材料调控钙钛矿太阳能器件性能的发展趋势。  相似文献   

18.
目前,有机-无机杂化钙钛矿太阳能电池(PSC)的器件效率已经超过25%。电子传输层作为PSC中的重要组成部分在提取和传输光生电子,阻挡空穴,修饰界面,调节界面能级和减少电荷复合等方面起着关键作用。无机n型材料,例如TiO2、ZnO、SnO2和其他金属氧化物材料具有成本低和稳定性好的特点,经常在传统PSC中被用作电子传输层(ETL)。有机n型材料,例如富勒烯及其衍生物、萘二酰亚胺聚合物和小分子,具有良好的成膜性能及强的电子传输性能,经常在反式PSC中被用作ETL。本综述详细介绍了PSC中电子传输层的作用机理和制备方法;重点总结了金属氧化物材料、有机分子材料、复合材料和多层分子材料电子传输层和其改性手段的最新研究进展;最后,展望了电子传输层材料朝着高性能PSC的实际应用和发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号