首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
量子点敏化太阳能电池(QDSCs)因其制备成本低、工艺简单及量子点(QDs)本身的优异性能(如尺寸效应、多激子效应)等优点,近年来受到广泛关注。在此类电池中,无机半导体量子点敏化剂作为吸光材料,其自身的光电性质、制备方法、表面缺陷、化学稳定性及其在TiO2光阳极上的敏化方法等是影响电池性能的关键。本文综述了无机半导体量子点敏化剂(包括窄带隙二元量子点、多元合金量子点及Type-Ⅱ核壳量子点)的最新研究进展,重点介绍了胶体量子点的制备方法;分类阐释了量子点在TiO2光阳极表面的沉积与敏化方法,特别是双官能团辅助自组装吸附法;总结了针对提高电子注入效率和减少复合的量子点表面修饰方法;最后简要介绍了QDSCs的电解质和对电极的研究进展。  相似文献   

2.
采用浸渍法对钙钛矿太阳电池的介孔层TiO2纳米颗粒进行了SiO2、ZrO2、Al2O3几种绝缘氧化物包覆,研究了其对电池光伏性能以及界面电荷复合动力学的影响。结果表明, SiO2包覆之后,电池的填充因子(FF)从67.6%提高到72.3%,光电转换效率提升到13.7%, ZrO2和Al2O3包覆导致电池开路电压提升约50mV,但是短路电流(Jsc)和填充因子略有下降。采用纳秒时间尺度的瞬态吸收光谱技术,从时间分辨的角度分析了钙钛矿电池界面的电子和空穴的复合寿命,对电池性能的变化给出了合理的解释。  相似文献   

3.
在纳米TiO2多孔薄膜表面包覆超薄绝缘体,形成"核-壳"结构的势垒层,是目前染料敏化太阳电池(DSC)光阳极改性的研究热点之一.本文选取氧化钇(Y2O3)作为包覆层材料,采用浸渍法对纳米TiO2多孔薄膜进行修饰,研究Y2O3包覆处理对TiO2薄膜微观结构及能带结构的影响;将浸渍法制备得到的Y2O3/TiO2"核-壳"结构光阳极应用于DSC中,研究了饣覆层对电子传输复合以及DSC光电转换性能的影响.结果表明,Y2O3包覆处理后,薄膜的平带电势负移,且电子复合得到有效抑制,电子寿命增大,电池的开路电压明显提高.研究表明,适量引入Y2O3可以达改善电池性能的目的.  相似文献   

4.
冯小明  黄先威  黄辉  沈平  赵斌  谭松庭 《化学学报》2010,68(11):1123-1129
利用静电纺丝技术, 在TiO2纳米粒子上电纺一层网状TiO2纳米纤维微孔膜作为光散射层, 并在TiO2纳米粒子中掺杂少量MgO以抑制电子和空穴的复合, 得到TiO2纳米纤维/纳米粒子复合光阳极用于染料敏化太阳能电池. 将这种光阳极分别与有机三苯胺染料SD2, SD3或钌染料N719及鹅脱氧胆酸(CDCA)共敏化时, 在AM 1.5 (100 mW/cm2)的模拟太阳光照射下, 染料敏化太阳能电池的光电转换效率达到6.35%~8.85%. 同时, 使用半固态电解质可以达到液态电解质90%的光电转换效率.  相似文献   

5.
利用水热法合成核壳结构Au@SiO2@CeO2纳米微球,制备了一系列双层结构复合光阳极并应用于染料敏化太阳能电池(DSSC)。研究表明:当CeO2纳米微球和核壳结构Au@SiO2@CeO2纳米微球应用于DSSC光阳极散射层时,电池的光电转化效率有了显著提高。相对于纯TiO2(P25)光阳极,P25/CeO2纳米球光阳极电池的DSSC光电性能提高了15.3%,P25/Au@SiO2@CeO2纳米球光阳极电池的光电性能提高了27.9%。DSSC光电性能的提高主要归因于2个方面:一方面,Au纳米粒子的表面等离子体共振效应有效提高了光阳极薄膜的光散射效应。另一方面,CeO2具有较高的染料负载能力,核壳球形结构具有较高的比表面积,增强了光的散射效应,提高了电子传输能力。  相似文献   

6.
李银银  武倩楠  步琦璟  张凯  林艳红  王德军  邹晓新  谢腾峰 《催化学报》2021,42(5):762-771,中插5-中插6
近年来以Z型机制为转移的光催化体系成微光电化学分解水领域的研究热点.相比较传统的异质结,Z型异质结能够保留具有高氧化能力与高还原能力的位点,从而提高光电化学效率.其中,证明电荷的Z型迁移机制成为研究人员努力的方向,比较有效的证明方法包括自由基捕获、XPS分析和检测还原位点等.对于Z型异质结,界面电场处电荷的迁移行为是至关重要的,但目前常用的证明手段对界面电场处电荷的迁移行为研究还比较少.因此,本文精心设计了CdS/Ti-Fe2O3异质结光阳极来探索光电化学分解水中的电荷转移行为.采用开尔文探针测试、表面光电压谱测试和瞬态光电压谱测试等光物理测试手段监测CdS/Ti-Fe2O3Z型异质结光阳极界面电场中光生电荷的迁移行为.其中,开尔文探针和表面光电压测量表明,CdS/Ti-Fe2O3界面驱动力有利于激发电子快速迁移至CdS;由于Z型异质结是一个双光子的过程,因此在瞬态光电压的过程中采取了双光束策略,即用不同波长的光分别从两个半导体侧进行照光,以充分发挥内层CdS的电子传输层的作用.结果表明,在双光束照射下界面电场增强,使得更多Ti-Fe2O3电子与CdS空穴结合,使得更多Ti-Fe2O3电子与CdS空穴结合,更多的空穴迁移到Ti-Fe2O3的表面去参与反应,充分证明了CdS/Ti-Fe2O3光阳极的Z型迁移机制.基于界面电场有效的电荷迁移与分离的分析,对Z型异质结光阳极进行了光电化学的测试,与单纯Ti-Fe2O3光阳极相比,CdS/Ti-Fe2O3光阳极表现出优异的光电化学性能.其中,25CdS/Ti-Fe2O3光阳极的光电流密度在1.23V(相对于标准氢电极)达到1.94 mA/cm2,比单纯Ti-Fe2O3光电流高出两倍.阻抗测试结果表明,CdS/Ti-Fe2O3光阳极能够减小电荷传输阻力,从而加快电荷分离效率,这也间接证明了Z型光阳极的成功构筑,因此,本文提供了一个有效且新颖的手段来证明光电化学分解水中光催化系统的Z型电荷转移机制.  相似文献   

7.
分别以CuI 和InAc3 作为铜源和铟源, 十二硫醇(DDT)作为硫源, 采用直接加热法合成不同尺寸的CuInS2 (CIS)量子点. 运用X射线衍射(XRD), 拉曼光谱(Raman), 高分辨率透射电镜(HRTEM), 紫外-可见(UVVis)吸收光谱表征其相结构、形貌及光学性能. 结果表明: 制备的CIS量子点为黄铜矿结构, 且随着时间的延长, 量子点逐渐长大, 吸收光谱的激子吸收峰逐渐红移, 表现出量子尺寸效应. 采用巯基乙酸为双功能耦联剂辅助吸附法制备CIS敏化的TiO2薄膜. 通过衰减全反射红外光谱(ATR-FTIR)分析得出, 巯基乙酸上的羧基与TiO2表面羟基连接, 另一端上的巯基代替长链的DDT与CIS 耦联, 将CIS 成功锚定在TiO2表面. 该方法不仅操作简单, 而且容易实现CIS在TiO2表面的吸附. 太阳电池光电性能测试表明, 粒径大小约为3.6 nm的CIS量子点表现出最优的吸附能力以及光电转换性能. 进一步采用连续离子吸附层法对CIS敏化的TiO2薄膜进行CdS包覆, 光电转换性能大大提高, 其效率达到2.83%, 这主要源于CdS的包覆钝化了CIS 的表面缺陷, 有效地降低了电子复合.  相似文献   

8.
太阳能驱动的光电化学(PEC)水分解可以有效地将太阳能转化为化学能,作为解决环境排放和能源危机最具前景的途径之一,已经引起了科学界的广泛关注.PEC水分解系统由两个半反应组成:在光阳极上的析氧反应(OER)和光阴极上的析氢反应(HER).PEC系统的太阳能转化效率主要由光阳极/电解质界面的OER过程所决定,这是一个非常复杂且涉及质子偶联的多步四电子转移过程.钒酸铋(BiVO4)是应用于PEC水分解的典型且具有实际应用前景的光阳极材料之一.然而,由于不良的表面电荷转移、电荷在光阳极/电解质结面处的表面复合以及缓慢的OER动力学等因素,导致BiVO4的PEC性能受到严重限制.本文开发了一种新颖有效的解决方案,以低成本、高电导率和具有快速电荷转移能力的硫化钴装饰来提升BiVO4光阳极的PEC活性,X射线多晶衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征,研究结果表明CoS成功装饰于BiVO4表面.采用紫外-可见吸收光谱(UV-VisDRS)研究了BiVO4和复合光阳极CoS/BiVO4的光学性质,结果表明,与纯的BiVO4相比,CoS/BiVO4光阳极在可见光范围内光吸收能力有所增强.将制备的BiVO4和CoS/BiVO4光阳极应用于PEC分解水实验中,结果表明,相对于1.23 V可逆氢电极,在光照下,CoS/BiVO4光阳极的光电流密度显著提升,可高达3.2 m Acm-2,是纯BiVO4的2.5倍以上.与纯BiVO4相比,CoS/BiVO4光阳极的起始氧化电位显示出负向偏移0.2 V,表明析氧过电势得到有效减小.入射光子转换效率(IPCE)测试结果表明,CoS/BiVO4光阳极的入射光子转换效率在500 nm之前的可见光范围内得到明显提升,其中,CoS/BiVO4的IPCE值在380 nm处达到最大.此外,由于CoS的装饰作用,CoS/BiVO4光阳极的电荷注入效率和电荷分离效率均得到较大的提升,分别达到75.8%(相较于纯BiVO4光阳极的36.7%)和79.8%(相较于纯BiVO4光阳极的66.8%).电化学阻抗谱(EIS)测试结果表明,通过CoS的装饰,CoS/BiVO4光阳极的界面电荷转移电阻得到有效降低,证明其界面电荷转移动力学得到有效提升.光致发光光谱测试结果表明,CoS的装饰显著提高了BiVO4的光生电子-空穴对的分离效率,进一步证明BiVO4表面的CoS装饰在其PEC分解水中起着非常积极的作用.本文为通过表面修饰设计应用于PEC水分解的有效的光阳极提供了新思路.  相似文献   

9.
染料敏化太阳能电池中TiO2光阳极研究进展   总被引:5,自引:0,他引:5  
赵勇  盛显良  翟锦 《化学进展》2006,18(11):1452-1459
本文介绍了染料敏化太阳能电池中TiO2光阳极的研究与应用现状。对TiO2光阳极常用的制备方法进行了综述,详细地讨论了复合核壳结构、掺杂电极、优化材料以及多级结构等一系列新材料的引入和结构改进所引起的电池光电性能的提高。文章指出获得具有好的光收集效率、快速的电荷传输以及优越的抑制电荷复合性能的多孔膜将是未来TiO2光阳极研究的方向。  相似文献   

10.
本研究采用PO43-掺杂和AlF3包覆的协同改性策略制备了P-LNCM@AlF3正极材料(P=PO43-,LNCM=Li1.2Ni0.13Co0.13Mn0.54O2),提高了LNCM的结构稳定性以及抑制了界面副反应。其中,大四面体的PO43-聚阴离子掺杂在晶格中抑制了过渡金属离子的迁移,降低体积变化,从而稳定了晶体结构,而且PO43-掺杂能够扩大锂层间距,促进Li+的扩散,从而提升材料的倍率性能。此外,AlF3包覆层能抑制材料与电解液的副反应从而提升界面稳定性。基于以上优势,P-LNCM@AlF3正极表现出了优异的电化学性能。在1C电流密度下表现出了179.2 mAh·g-1  相似文献   

11.
Surface recombination at the photoanode/electrolyte junction seriously impedes photoelectrochemical (PEC) performance. Through coating of photoanodes with oxygen evolution catalysts, the photocurrent can be enhanced; however, current systems for water splitting still suffer from high recombination. We describe herein a novel charge transfer system designed with BiVO4 as a prototype. In this system, porphyrins act as an interfacial‐charge‐transfer mediator, like a volleyball setter, to efficiently suppress surface recombination through higher hole‐transfer kinetics rather than as a traditional photosensitizer. Furthermore, we found that the introduction of a “setter” can ensure a long lifetime of charge carriers at the photoanode/electrolyte interface. This simple interface charge‐modulation system exhibits increased photocurrent density from 0.68 to 4.75 mA cm?2 and provides a promising design strategy for efficient photogenerated charge separation to improve PEC performance.  相似文献   

12.
The effect of methanol content in water based polysulfide electrolytes in TiO(2)/CdS/CdSe quantum dot sensitized solar cells (QDSSCs) prepared by the SILAR method was studied. In addition, the effect of coating the mesoporous QD sensitized films with ZnS outer layers was investigated. Charge recombination reactions were measured using time resolved spectroscopic measurements. These studies reveal a synergistically beneficial effect from using ZnS layers and methanol in the polysulfide electrolyte on the control of charge transfer processes within these devices and ultimately on overall cell performance.  相似文献   

13.
Among the third-generation photovoltaic devices, much attention is being paid to the so-called Quantum Dot sensitized Solar Cells (QDSCs). The currently poor performance of QDSCs seems to be efficiently patched by the ZnS treatment, increasing the output parameters of the devices, albeit its function remains rather unclear. Here new insights into the role of the ZnS layer on the QDSC performance are provided, revealing simultaneously the most active recombination pathways. Optical and AFM characterization confirms that the ZnS deposit covers, at least partially, both the TiO(2) nanoparticles and the QDs (CdSe). Photoanodes submitted to the ZnS treatment before and/or after the introduction of colloidal CdSe QDs were studied by electrochemical impedance spectroscopy, cyclic voltammetry and photocurrent experiments. The corresponding results prove that the passivation of the CdSe QDs rather than the blockage of the TiO(2) surface is the main factor leading to the efficiency improvement. In addition, a study of the ultrafast carrier dynamics by means of the Lens-Free Heterodyne Detection Transient Grating technique indicates that the ZnS shell also increases the rate of electron transfer. The dual role of the ZnS layer should be kept in mind in the quest for new modifiers for enhancing the performance of QDSCs.  相似文献   

14.
The present investigation described the performance of dye-sensitized solar cells (DSSCs) based on various sensitizers applied on TiO2-Nb2O5 core/shell photoanode film. The novel photoanodes were prepared using composite of TiO2 nanoparticles (TNPs) and TiO2 nanorods (TNRs) as core (TNPRs) layer with Nb2O5 shell coating. As well, tantalum pentoxide (Ta2O5), a blocking layer applied over the core/shell film. The DSSCs were fabricated based on various sensitizers namely zinc phthalocyanine, indoline, indigo carmine, zinc porphyrin, N719, coumarin NKX-2700, polymer dye, quantum dots (QDs), perylene and squaraine. The IV characteristics of the DSSCs, photocurrent density (Jsc), open-circuit voltage (Voc), fill factor (FF), and photoconversion efficiency (PCE) were determined under illumination of AM 1.5 G. Electrochemical impedance spectroscopy (EIS) analysis is carried out to study the charge transport and life-time of charge carriers at photoanode/dye/electrolyte interface of the DSSCs. The IV and EIS results explicated that the core/shell with blocking layers were able to alleviate the electron transport and suppressed charge recombination at photoanode/dye/electrolyte interface of the DSSCs. Concerning the sensitizers, PCE of the DSSCs exemplify the order N719 > zinc porphyrin > coumarin NKX-2700 > indoline > squaraine > QDs > zinc phthalocyanine > perylene > polymer dye > indigo carmine dye. The results of the present work demonstrated that among the sensitizers studied, N719 showed the highest PCE and fill factor. Besides, the metal-free organic sensitizers (coumarin NKX-2700 and indoline) exhibited comparable PCE as compared to N719.  相似文献   

15.
Oxygen vacancy (VO) engineering is an effective method to tune the photoelectrochemical (PEC) performance, but the influence of VO on photoelectrodes is not well understood. Using hematite as a prototype, we herein report that VO functions in a more complicated way in PEC process than previously reported. Through a comprehensive analysis of the key charge transfer and surface reaction steps in PEC processes on a hematite photoanode, we clarify that VO can facilitate surface electrocatalytic processes while leading to severe interfacial recombination at the semiconductor/electrolyte (S‐E) interface, in addition to the well‐reported improvements in bulk conductivity. The improved bulk conductivity and surface catalysis are beneficial for bulk charge transfer and surface charge consumption while interfacial charge transfer deteriorates because of recombination through VO‐induced trap states at the S‐E interface.  相似文献   

16.
The effect of the number and arrangement of TiO2‐based photoanode layers on the efficiency of dye‐sensitized solar cells (DSSCs) was investigated. Compact, mesoporous, and blocking layers of TiO2 were prepared to form monolayer, bilayer, and trilayer photoanodes. Compact and blocking TiO2 layers were prepared using dip‐coating technique, whereas the doctor‐blade method was employed to prepare TiO2 paste layers using nanoparticles prepared by the sol–gel method. The crystalline structure of photoanodes was characterized by X‐ray diffraction (XRD) measurements and their morphology and thickness were characterized by the scanning electron microscopy (SEM) technique. The photovoltaic performance of constructed DSSC devices was investigated and the optimum arrangement was identified and explained in terms of dye loading enhancement and recombination reduction at the fluorine‐doped tin oxide (FTO)/electrolyte interface.  相似文献   

17.
An attempt has been made to fabricate methyl ammonium tin chloride (CH3NH3SnCl3) perovskite-sensitized TiO2 nanostructure photoanode solar cell with hole transport material (HTM) spiro-MeOTAD and graphite-coated counter electrode (CE). The TiO2 nanoparticles (TNPs), TiO2 nanoleaves (TNLs), and TNLs with MgO core/shell photoanodes were prepared to fabricate perovskite-sensitized solar cells (PSSCs). The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The photovoltaic characteristics of the PSSCs, photocurrent density (J sc), open-circuit voltage (V oc), fill factor (FF), and power conversion efficiency (PCE) were determined under illumination of AM 1.5 G. Electrochemical impedance spectroscopy (EIS) analysis was carried out to study the charge transport and lifetime of charge carriers at the photoanode–sensitizer–electrolyte interface of the PSSCs. The PSSC made with CH3NH3SnCl3 perovskite-sensitized TNL–MgO core/shell photoanode and spiro-MeOTAD HTM shows an impressive photovoltaic performance, with J sc = 17.24 mA/cm2, V oc = 800 mV, FF = 73 %, and PCE = 9.98 % under 100 mW/cm2 light intensity. The advent of such simple solution-processed mesoscopic heterojunction solar cells paves the way to realize low-cost and high-efficiency solar cells. By the aid of electrochemical impedance spectroscopy, it is revealed that the core/shell structure can increase an interfacial resistance of the photoanode–CH3NH3SnCl3 interface and retard an electron recombination process in the photoanode–sensitizer–HTM interface.  相似文献   

18.
《中国化学快报》2023,34(6):108007
Water splitting by photoelectrochemical (PEC) processes to convert solar energy into hydrogen energy using semiconductors is regarded as one of the most ideal methods to solve the current energy crisis and has attracted widespread attention. Herein, Co-based metal-organic framework (Co(bpdc)(H2O)4 (Co-MOF) nanosheets as passivation layers were in-situ constructed on the surface of BiVO4 films through an uncomplicated hydrothermal method (Co-MOF/BiVO4). Under AM 1.5G illumination, synthesized Co-MOF/BiVO4 electrode exhibited a 4-fold higher photocurrent than bare BiVO4, measuring 6.0 mA/cm2 at 1.23 V vs. RHE in 1 mol/L potassium borate electrolyte (pH 9.5) solution. Moreover, the Co-MOF/BiVO4 film demonstrated a 96% charge separation efficiency, a result caused by an inhibited recombination rate of photogenerated electrons and holes by the addition of Co-MOF nanosheets. This work provides an idea for depositing inexpensive 2D Co-MOF nanosheets on the photoanode as an excellent passivation layer for solar fuel production.  相似文献   

19.
钙钛矿太阳能电池(PSCs)成为近几年来迅速发展的新型太阳能电池,其中将SnO2纳米粒子层用作电子传输层(ETL)的钙钛矿太阳能电池器件得到了广泛的关注。SnO2有着更低的制备温度,使其具备应用于柔性器件的潜力,但与钙钛矿层能级不匹配等问题限制着其发展。而在界面处加入钝化层,尤其是表面卤化的方法或可解决这一问题。本文综合研究了SnO2表面卤化对钙钛矿太阳能电池光伏性能的影响,选用四丁基氯化铵(TBAC)、四丁基溴化铵(TBAB)和四丁基碘化铵(TBAI)三种钝化材料对SnO2表面进行钝化处理,并对钝化材料溶液进行了浓度梯度研究。通过材料形貌、结构和光学性能表征以及电池器件性能测试分析等方法,证明了SnO2表面卤化可提高钙钛矿层的质量和PSCs光伏性能,并从器件内部电荷传输动力学等角度解释了器件性能改善的原因。为进一步说明其性能改善的机理,采用基于密度泛函理论(DFT)的第一性原理计算方法对材料表面性质进行了深入研究,从能量、结构、电荷密度、态密度、功函数等角度解释了表面卤化提高SnO2/钙钛矿界面处电子传输特性的原因。实验和理论计算均表明TBAC对于SnO2具有较好的钝化效果,并随着溶液浓度的提升钝化作用越明显。SnO2表面卤化作用的深入研究不仅对提高电池器件性能具有实际意义,还能够帮助理解太阳能电池界面现象,为界面改性提供新的研究思路。  相似文献   

20.
Dye-sensitized solar cells (DSSCs) employing a viscous non-volatile electrolyte were prepared by utilizing anatase TiO2 nanorods (synthesized via oriented attachment) as a photoanode material. One promising way to enhance the photovoltaic performance of DSSCs employing viscous electrolytes is to increase ion conductivity by increasing the salt concentration. This is accompanied by an acceleration of the charge recombination reaction and the limiting of the overall conversion efficiency. The results showed that a TiO2 nanorod electrode enables more favorable electron transport than a conventional nanoparticle-based electrode due to the improved electron diffusion length and the large intrinsic surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号