首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
李晓晨  曹靖 《化学通报》2020,83(11):962-969
为解决资源短缺和环境污染问题,太阳能电池应用研究引起了广泛的科学关注。在过去的十年间,钙钛矿太阳能电池作为一种新型的电池技术得到了快速发展,逐渐成为目前商业化硅基太阳能电池最有力的竞争对手之一。然而,钙钛矿薄膜在低温溶液制备过程中不可避免地形成缺陷,这些缺陷是严重制约钙钛矿太阳能电池光电转化效率与长期运行稳定性得到进一步提高的主要因素。利用功能化有机分子钝化钙钛矿薄膜表面及晶界处缺陷是提升电池性能及稳定性的有效手段。卟啉/酞菁金属配合物具有良好的稳定性和优异的光电特性,利用卟啉/酞菁金属配合物修饰钙钛矿薄膜是提高钙钛矿太阳能电池性能和稳定性的有效方法之一。本文综述了卟啉/酞菁金属配合物界面调控实现高效稳定钙钛矿太阳能电池组装的研究进展,并对其存在的问题及今后可能的发展方向进行了总结与展望。  相似文献   

2.
经过短短十年的发展,钙钛矿太阳能电池效率已经超过25%,极具商业化价值,这得益于三维(3D)钙钛矿材料具有合适的带隙、吸光系数高、电子迁移距离长等优点。但3D钙钛矿的稳定性依然是其亟待解决的问题。二维(2D)钙钛矿器件除了兼具3D钙钛矿的优异光电性质之外,其稳定性良好,是解决3D钙钛矿太阳能电池稳定性问题的一个可行方案。2D钙钛矿晶格中的疏水性大烷基胺阳离子能阻止湿气侵入的可能路径,使其成为光电器件的备选材料。由于2D钙钛矿对许多不同的有机和无机成分具有较高的耐受性,使其组成具有多样性,进而影响其能带变化。本文对2D钙钛矿的带隙调控及能带调控进行总结,希望对制备高效、稳定的低维度钙钛矿太阳能电池具有一定的指导意义。  相似文献   

3.
有机-无机杂化钙钛矿较低的缺陷形成能和表面的悬挂键会导致其薄膜中产生铅缺陷。这些深能级缺陷会直接引起载流子的非辐射复合,导致有机-无机杂化钙钛矿光伏器件的界面接触和载流子传输效率变差,最终降低了器件的综合性能。采用双硫腙作为钙钛矿薄膜表面的二次结晶诱导剂和铅缺陷钝化剂,通过对钙钛矿膜进行后处理的方法实现对钙钛矿薄膜的形貌调控和缺陷钝化。进一步的研究结果表明,双硫腙通过与铅离子配位的方式有效地钝化了铅缺陷,并诱导了表面钙钛矿晶体的二次结晶,改善了薄膜质量,进而提高了器件的综合性能。  相似文献   

4.
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   

5.
郭文明  钟敏 《无机化学学报》2017,33(7):1097-1118
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   

6.
有机/无机杂化金属卤化物钙钛矿半导体材料结合了有机材料良好的溶液可加工性以及无机材料优越的光电特性,近几年受到了热捧,成为太阳能电池领域一颗耀眼的明星. 伴随着钙钛矿薄膜结晶过程和形貌的优化、器件结构的改进以及电极界面材料的开发,这类有机/无机杂化金属卤化物钙钛矿太阳能电池的光电转换效率从最初的3.8%迅速提高到目前最高的22.1%. 其中界面工程在提升器件性能上发挥着极其重要的作用. 本文总结了平面p-i-n型钙钛矿太阳能电池中阴极界面修饰层(CBL)的研究进展. CBL从材料上讲可分为无机金属氧化物、金属或金属盐以及有机材料,从构成上讲可分为单层CBL、双层CBLs以及共混型CBL. 本文对这些类型的CBL分别给予详细的介绍. 最后,我们归纳出CBL在改善器件效率和稳定性上所起的作用以及理想CBL所应满足的要求,希望能为以后阴极界面修饰材料的设计提供一定的借鉴.  相似文献   

7.
张婧  何有军  闵杰 《物理化学学报》2018,34(11):1221-1238
有机-无机钙钛矿太阳能电池(PSCs)从2009年低于5%的能量转换效率到现在经过认证的超过22%的效率,成为科研热点和最有希望商业化的新型太阳能电池。在高性能的PSCs中,空穴传输材料是关键的一环,起到从钙钛矿活性层材料到对电极有效抽取和传输空穴的作用。本文在现有研究成果的基础上,对有机分子空穴传输材料在PSC中的应用进行总结,并强调分子材料结构对PSC器件性能(效率和稳定性)的影响。  相似文献   

8.
郭镇域  周欢萍 《化学学报》2021,79(3):223-237
有机-无机杂化钙钛矿发光二极管(LED)的性能在短短几年时间内飞速提升, 近红外光器件的效率已达21.6%, 绿光器件效率也达到20.3%, 达到可以和商业化的有机发光二极管媲美的水平; 即使是稍有逊色的稳定性方面也有很大进展, 报道的最长器件半衰期已达到250 h. 器件性能的飞速提升得益于钙钛矿本身优异的光电性质, 而且通过丰富的化学手段可进一步对钙钛矿材料的组分和结构进行调控, 从而优化器件性能. 本综述从组分设计、缺陷钝化和界面修饰的角度出发, 重点分析了组分和结构设计对钙钛矿LED器件效率和稳定性的影响, 最后对钙钛矿发光二极管的未来发展进行展望.  相似文献   

9.
新型有机-无机杂化二维(2D)钙钛矿具有优良的光电性能、 结晶性和稳定性, 在太阳能电池领域引起广泛关注. 相比于三维(3D)钙钛矿, 由于有机间隔阳离子(OSC)的引入形成独特的层状晶体结构赋予了材料特殊性质: (1) 多层量子阱结构促成材料各项异性的光电性质; (2) 间隔阳离子改变前驱体团簇状态, 实现溶液中高质量的结晶; (3) 间隔层的疏水性质和抑制离子迁移作用, 从本源上改善了钙钛矿的稳定性. 近年来, 针对准2D钙钛矿太阳能电池(准2D-PSCs)展开了广泛研究, 并取得了一系列重要研究成果. 本文从准2D钙钛矿材料的晶体结构与取向、 相分布、 光电性质到器件的能量转化效率与稳定性等方面, 综合评述了近年来准 2D-PSCs的最新研究进展, 总结了晶体结构-材料性质-电池性能之间的作用机制, 并进一步展望了未来研究的趋势.  相似文献   

10.
卢岳  葛杨  隋曼龄 《物理化学学报》2022,38(5):2007088-86
随着光伏产业的不断发展,有机无机杂化钙钛矿太阳能电池的研发成为科学与工业界广泛关注的焦点。到目前为止,其光电转换效率已经提高到了25.2%,成为替代硅基太阳能电池的核心方案之一。然而,钙钛矿太阳能电池的稳定性较差,容易受到环境中氧气、水分、温度甚至光照的影响,这严重制约了其大规模推广与应用。大量科学研究表明,如何避免紫外辐照下有机无机杂化钙钛矿太阳能电池的性能衰减,对于提高钙钛矿太阳能电池的光照稳定性至关重要。然而到目前为止,仍然没有系统的工作来对紫外辐照下钙钛矿太阳能电池性能以及微结构演化过程进行详细的表征与分析。本文中,我们利用聚焦离子束-扫描电子显微分析(FIB-SEM)以及球差校正透射电子显微分析(TEM)等技术,全面地研究了紫外辐照过程中有机无机杂化钙钛矿太阳能电池性能变化规律以及电池微结构演化特征。实验结果表明,紫外辐照过程中太阳能电池内部会形成0.5–0.6 V的内建电场,钙钛矿中的I-离子在电场的驱动下向金属Au电极和空穴传输层2, 2’, 7, 7’-四[N, N-二(4-甲氧基苯基)氨基]-9, 9'-螺二芴(Spiro-OMeTAD)一侧迁移;随后,空穴传输层与金电极的界面处,碘离子与光生空穴一起与金电极发生反应,将金属态Au氧化成离子态Au+。而Au+离子则在内建电场的驱动下反向迁移穿过钙钛矿MAPbI3层,直接被SnO2和MAPbI3界面处的电子还原形成金属Au纳米团簇。除此之外,紫外辐照过程中钙钛矿太阳能电池性能降低的同时,往往伴随着Spiro-OMeTAD与钙钛矿界面处物质迁移、钙钛矿薄膜内晶界展宽以及Au纳米颗粒周围MAPbI3物相分解等现象。以上各种因素的协同作用,共同导致了紫外光照下有机无机杂化钙钛矿太阳能电池光电转换性能(PCE)、开路电压(Voc)以及短路电流(Jsc)等性能参数的急剧下降。  相似文献   

11.
Defect passivation has been demonstrated to be effective in improving the radiative recombination of charge carriers in perovskites, and consequently, the device performance of the resultant perovskite light‐emitting diodes (LEDs). State‐of‐the‐art useful passivation agents in perovskite LEDs are mostly organic chelating molecules that, however, simultaneously sacrifice the charge‐transport properties and thermal stability of the resultant perovskite emissive layers, thereby deteriorating performance, and especially the operational stability of the devices. We demonstrate that lithium halides can efficiently passivate the defects generated by halide vacancies and reduce trap state density, thereby suppressing ion migration in perovskite films. Efficient green perovskite LEDs based on all‐inorganic CsPbBr3 perovskite with a peak external quantum efficiency of 16.2 %, as well as a high maximum brightness of 50 270 cd m?2, are achieved. Moreover, the device shows decent stability even under a brightness of 104 cd m?2. We highlight the universal applicability of defect passivation using lithium halides, which enabled us to improve the efficiency of blue and red perovskite LEDs.  相似文献   

12.
Metal halide perovskite solar cells (PSCs), with their exceptional properties, show promise as photoelectric converters. However, defects in the perovskite layer, particularly at the grain boundaries (GBs), seriously restrict the performance and stability of PSCs. Now, a simple post-treatment procedure involves applying 2-aminoterephthalic acid to the perovskite to produce efficient and stable PSCs. By optimizing the post-treatment conditions, we created a device that achieved a remarkable power conversion efficiency (PCE) of 21.09 % and demonstrated improved stability. This improvement was attributed to the fact that the 2-aminoterephthalic acid acted as a cross-linking agent that inhibited the migration of ions and passivated the trap states at GBs. These findings provide a potential strategy for designing efficient and stable PSCs regarding the aspects of defect passivation and crystal growth.  相似文献   

13.
《中国化学快报》2020,31(12):3055-3064
Hybrid organic–inorganic perovskite materials have attracted significant attention of most researchers in recently years, which is ascribed to the superior photoelectric properties, such as the suitable band gaps for harvesting sunlight, and exhibit high optical adsorption, high charge-carrier lifetimes and long diffusion lengths. The photodetectors, light-emitting diodes, solar cells and photocatalysts represent the remarkable applications for the hybrid organic–inorganic perovskite materials. Herein, we review the recent progress of hybrid organic–inorganic perovskite-based photodetectors, light-emitting diodes, solar cells and photocatalysts. The challenges and outlook for the hybrid organic–inorganic perovskite-based photodetectors, light-emitting diodes, solar cells and photocatalysts are considered.  相似文献   

14.
Perovskite solar cells(PSCs) have attracted tremendous attention due to their outstanding performance within a short development. Radical molecules with unpaired single electrons have been widely used in energy-related fields, such as organic light-emitting diodes(OLEDs), organic field-effect transistors(OFETs), organic and dye-sensitized solar cells, batteries, thermoelectric conversion devices, etc. However, as far as we know, there has never been a systemic collection and analysis of the application of radical molecules in PSCs. Herein, we summarized the role of the radical molecule on perovskite(passivate trap defects, enhance oxygen stability and make perovskite band-bending) and charge transport layer(improve conductivity and mobility, enhance oxygen stability, modulate work function and decrease by-product generating). Meanwhile, future directions of making full use of radical molecules in improving the performances of PSCs were envisioned.  相似文献   

15.
Carbonyl functional materials as additives are extensively applied to reduce the defects density of the perovskite film. However, there is still a lack of comprehensive understanding for the effect of carbonyl additives to improve device performance. In this work, we systematically study the effect of carbonyl additive molecules on the passivation of defects in perovskite films. After a comprehensive investigation, the results confirm the importance of molecular dipole in amplifying the passivation effect of additive molecules. The additive with strong molecular dipole possesses the advantages of enhancing the efficiency and stability of perovskite solar cells (PSCs). After optimization, the companion efficiency of PSCs is 23.20 %, and it can maintain long-term stability under harsh conditions. Additionally, a large-area solar cell module-modified DLBA was 20.18 % (14 cm2). This work provides an important reference for the selection and designing of efficient carbonyl additives.  相似文献   

16.
Metal halide perovskite solar cells (PSCs), with their exceptional properties, show promise as photoelectric converters. However, defects in the perovskite layer, particularly at the grain boundaries (GBs), seriously restrict the performance and stability of PSCs. Now, a simple post‐treatment procedure involves applying 2‐aminoterephthalic acid to the perovskite to produce efficient and stable PSCs. By optimizing the post‐treatment conditions, we created a device that achieved a remarkable power conversion efficiency (PCE) of 21.09 % and demonstrated improved stability. This improvement was attributed to the fact that the 2‐aminoterephthalic acid acted as a cross‐linking agent that inhibited the migration of ions and passivated the trap states at GBs. These findings provide a potential strategy for designing efficient and stable PSCs regarding the aspects of defect passivation and crystal growth.  相似文献   

17.
As extremely important inorganic materials, metal oxides play an irreplaceable role in solid perovskite solar cells. In this review, the preparation methods of metal oxides, their effects on the perovskite optoelectronic devices incorporated with the energy level compatibility of perovskite materials are provided. Finally, the possible reactions between interfaces during growth progress as well as passivation mechanism of some metal oxides to perovskite materials are discussed. The physical, chemical, and electrical properties of functional metal oxides endow the enhancement of the efficiency and stability of perovskite photovoltaic devices.  相似文献   

18.
Thin films of perovskite deposited from solution inevitably introduce large number of defects,which serve as recombination centers and are detrimental for solar cell performance.Although many small molecules and polymers have been delicately designed to migrate defects of perovskite films,exploiting credible passivation agents based on natural materials would offer an alternative approach.Here,an ecofriendly and cost-effective biomaterial,ploy-L-lysine(PLL),is identified to effectively passivate the defects of perovskite films prepared by blade-coating.It is found that incorporation of a small amount(2.5 mg mL-1)of PLL significantly boosts the performance of printed devices,yielding a high efficiency of 19.45% with an increase in open-circuit voltage by up to 100 mV.Density functional theory calculations combined with X-ray photoelectron spectroscopy reveal that the functional groups(-NH2,-COOH)of PLL effectively migrate the Pb-I antisite defects via Pb-N coordination and suppress the formation of metallic Pb in the blade-coated perovskite film.This work suggests a viable avenue to exploit passivation agents from natural materials for preparation of high-quality perovskite layers for optoelectronic applications.  相似文献   

19.
Hole transporting material (HTM) is a significant component to achieve the high performance perovskite solar cells (PSCs). Over the years, inorganic, organic and hybrid (organic‐inorganic) material based HTMs have been developed and investigated successfully. Today, perovskite solar cells achieved the efficiency of 22.1 % with with 2,2’,7,7’‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine) 9,9‐spirobifluorene (spiro‐OMeTAD) as HTM. Nevertheless, synthesis and cost of organic HTMs is a major challenging issue and therefore alternative materials are required. From the past few years, inorganic HTMs showed large improvement in power conversion efficiency (PCE) and stability. Recently CuOx reached the PCE of 19.0% with better stability. These developments affirms that inorganic HTMs are better alternativesto the organic HTMs for next generation PSCs. In this report, we mainly focussed on the recent advances of inorganic and hybrid HTMs for PSCs and highlighted the efficiency and stability of PSCs improved by changing metal oxides as HTMs. Consequently, we expect that energy levels of these inorganic HTMs matches very well with the valence band of perovskites and improved efficiency helps in future practical deployment of low cost PSCs.  相似文献   

20.
The perovskite solar cells (PSCs) with high efficiency and stability are in great demand for commercial applications. Although the remarkable photovoltaic feature of perovskite layer plays a great role in improving the PCE of PSCs, the inevitable defects and poor stability of perovskite, etc. are the bottleneck and restrict the commercialization of PSCs. Herein, a review provides a strategy of applying aggregation-induced emission (AIE) molecules, containing passivation functional groups and distinct AIE character, which serves as the alternative materials for fabricating high-efficiency and high-stability PSCs. The methods of introducing AIE molecules to PSCs are also summarized, including additive engineering, interfacial engineering, hole transport materials and so on. In addition, the functions of AIE molecule are discussed, such as defects passivation, morphology modulation, well-matched energy level, enhanced stability, hole transport ability, carrier recombination suppression. Finally, the detailed functions of AIE molecules are offered and further research trend for high performance PSCs based on AIE materials is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号