首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
煤加氢液化研究—沥青烯的加氢裂解   总被引:1,自引:0,他引:1  
在快速升温和冷却的共振搅拌反应器中,以四氢萘为溶剂,对用山东滕县煤制备的沥青烯进行了加氢裂解试验。反应条件如下:反应温度380—430℃,氢初压9.0MPa,名义反应时间0—27min。试验结果表明,沥青烯加氢裂解的初始阶段为一级反应。计算了初始阶段的反应速度常数和表观活化能;加预硫化Ni-Mo催化剂(3673)时△E为140kJ/mol,不加催化剂时△E为174kJ/mol,与文献结果一致。试验还比较了3673、氧化铁、硫铁矿、德国赤泥和海南岛铁矿等催化剂对沥青烯加氢裂解的催化活性,其顺序为3673(预硫化)>Fe_2O_3 S>Fe_2O_3 Al_2O_3 S,德国赤泥 S,硫铁矿>海南岛铁矿 S。  相似文献   

2.
本文对二苯甲烷、二苯乙烷、二苯醚、苯基苄基醚和二苄醚等五个与煤的化学结构和煤液化有关的模型化合物在供氢溶剂四氢萘中、N_2压力为50—60大气压下的热解反应动力学及反应机理进行了研究。结果表明: (1) 二苯甲烷和=苯醚在435 ℃/2 h条件下依然比较稳定, 这意味着, 在实际煤液化过程中, C—C、C—O键的断裂不能靠这些简单结构方式的裂解加以解释; (2) 二苯乙烷和苯基苄基醚的热解有一级反应特征, 其反应机理为自由基过程, 反应速度方程和速度常数的理论计算与实验结果完全一致; (3) 二苄醚的热解可用分子内氢转移模型得到较好解释, 热解产物苯甲醛进一步脱氧生成甲苯, 这可能是煤液化中除氧的一条很重要的途径。  相似文献   

3.
以四三苯基膦钯为催化剂,碳酸铯为碱,氯代碘苯和氯代苯硫酚在甲苯中加热到112℃回流16 h,发生偶联反应形成C—S—C硫醚键,合成了23个多氯代二苯硫醚系列化合物,产物均经IR,1H NMR表征,并测定熔点.反应操作简单,收率良好,条件温和,是一种较好的合成多氯代二苯硫醚化合物的新方法.  相似文献   

4.
本文报道以缺铝氢型丝光沸石催化烯或三环烯与六种含环醇的烷氧基化反应,以较高产率生成1,7,7—三甲基双环(2,2,1)庚基环烷基醚(或苯基烷基醚)。同时生成少量的(6,7,7—三甲基双环(2,2,1)庚基环烷基醚(或苯基烷基醚)副产物。含苯环产物通过Raney镍催化剂加氢也可得到标题化合物。  相似文献   

5.
以RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   

6.
以RuCl3 /PPh3 为催化剂体系研究了琥珀酸酐均相催化加氢反应动力学 .结果表明当催化剂浓度小于1.0× 10 -2 mol /L ,n(PPh3 ) /n(Ru) =7,SA浓度小于 2 .2 5mol /L和反应氢压PH2 小于 2 .2 5MPa时 ,反应速率方程为R =k1[Ru][SA]PH2 ;当反应氢压PH2 大于 2 .77MPa时 ,反应速率方程为R =k2 [Ru][SA].琥珀酸酐加氢生成γ -丁内酯的活化能Ea为 85 .2kJ/mol,活化焓△H≠ 为 81.8kJ /mol  相似文献   

7.
研究了Ni基催化剂上木质素模型化合物苯基苯乙醚中C-O-C键加氢裂解性能.结果表明,Ni/C催化剂显示出优异的加氢裂解能力,苯基苯乙醚的转化率达到99%以上.Ni/C催化剂的还原方法对裂解选择性有重要影响;氢气还原制备的Ni/C-H催化剂上,C-O-C键裂解选择性为85%.Ru/C和Pd/C催化剂上裂解选择性分别为40%和69%.采用碳热还原方法制备的Ni/C-C催化剂,可以实现高选择性加氢和裂解,C-O-C键裂解选择性达到99%以上,其中芳烃化合物收率为44%.这可能与镍组分和载体碳之间的相互作用有关.  相似文献   

8.
对FCC柴油在浆态床柴油加氢催化剂SP25上的加氢工艺条件进行了优化,并考察了加氢脱硫(HDS)和加氢脱氮(HDN)动力学。结果表明,提高反应温度、提高反应压力、增加催化剂的加入量、延长反应时间都能提高催化剂的加氢精制活性,最佳的FCC柴油浆态床加氢工艺条件为,温度350℃、压力6MPa、催化剂加入量6%、反应时间2h。催化剂循环使用性能的考察结果表明,SP25催化剂具有良好的活性稳定性。动力学研究结果表明,FCC柴油的加氢脱硫反应过程可以分为两个阶段。第一阶段为较易脱除的苯并噻吩类(BTs)硫化物的加氢脱硫反应,反应活化能为70.00kJ/mol;第二阶段为较难脱除的二苯并噻吩类(DBTs)硫化物的加氢脱硫反应,反应活化能为85.65kJ/mol。FCC柴油HDN反应的活化能为79.91kJ/mol。烷基取代的二苯并噻吩类硫化物(特别是DMDBTs)是加氢精制反应中最难脱除的含杂原子(S或N)烃类化合物。  相似文献   

9.
对FCC柴油在浆态床柴油加氢催化剂SP25上的加氢工艺条件进行了优化,并考察了加氢脱硫(HDS)和加氢脱氮(HDN)动力学。结果表明,提高反应温度、提高反应压力、增加催化剂的加入量、延长反应时间都能提高催化剂的加氢精制活性,最佳的FCC柴油浆态床加氢工艺条件为,温度350℃、压力6MPa、催化剂加入量6%、反应时间2h。催化剂循环使用性能的考察结果表明,SP25催化剂具有良好的活性稳定性。动力学研究结果表明,FCC柴油的加氢脱硫反应过程可以分为两个阶段。第一阶段为较易脱除的苯并噻吩类(BTs)硫化物的加氢脱硫反应,反应活化能为70.00kJ/mol;第二阶段为较难脱除的二苯并噻吩类(DBTs)硫化物的加氢脱硫反应,反应活化能为85.65kJ/mol。FCC柴油HDN反应的活化能为79.91kJ/mol。烷基取代的二苯并噻吩类硫化物(特别是DMDBTs)是加氢精制反应中最难脱除的含杂原子(S或N)烃类化合物。  相似文献   

10.
ZnCl2/粘土-SA01催化合成二苯甲烷反应动力学研究   总被引:1,自引:0,他引:1  
在ZnCl2/粘土-SA01催化剂上合成了二苯甲烷,考察了负载量、苯/苄基氯摩尔比、催化剂用量、反应温度和时间对该反应的影响,研究了以ZnCl2/粘土-SA01为催化剂合成二苯甲烷的反应动力学,为探讨其反应机理和研究烷基化反应动力学提供了依据.结果表明,温度在303-318K时,本征动力学方程为r=k[ZnCl2/粘土-SA01]0.8[C6H6][C6H5CH2Cl],属二级反应,表观反应活化能为88.6kJ/mol;在328-353K时,其本征动力学方程为r=k[ZnCl2/粘土-SA01]0.1,反应属零级反应,表观活化能为52.8kJ/mol.  相似文献   

11.
将二苯二硫醚作为硫源与1-甲基-2-苯基吲哚反应合成了含杂原子环的硫醚类化合物,然后再与二芳基碘三氟甲磺酸鎓盐反应,合成了一种新的芳基硫鎓盐。采用1 HNMR、MS等技术对目标化合物进行了表征,并确定了最佳反应条件。在硫醚类化合物与二芳基碘三氟甲磺酸鎓盐的摩尔比为1∶1.2,催化剂为CuI/Cu,溶剂为1,1,2,2-四氯乙烷的反应条件下,目标化合物的产率达到了62.0%。同时,对这类结构的芳基硫鎓盐进行了紫外光固化性能测试,发现其能够在紫外光固化体系中作为阳离子光引发剂得到应用。  相似文献   

12.
通过室温下高硫煤的S甲基化反应,可使煤结构中的一种碳硫键选择性断裂。煤样先经O甲基化反应,使酚羟基转变为甲基醚,然后再经由碘甲烷和四氟硼酸银组成的S甲基化试剂进行S甲基化反应。断裂后硫以四氟硼酸三甲基锍的形式用13CNMR进行检测。以模型化合物4,4二甲氧基二苄基硫醚进行S甲基化反应,亦可高产率地生成四氟硼酸三甲基锍。提出一个由苄基碳正离子和硫醚组成的离子偶极集合物作为反应中间体的反应机理。最后,13CNMR定量分析结果表明,烟煤中含有约2%的4,4二甲氧基二苄基型硫醚或4,4二羟基二苄基型硫醚。  相似文献   

13.
裂解汽油中噻吩硫在Co-Mo/Al2O3上的催化加氢宏观动力学   总被引:3,自引:5,他引:3  
采用绝热管式固定床积分反应器,在2.5MPa~3.9MPa、513K~655K、氢/裂解汽油摩尔比1.8~3.5和裂解汽油中噻吩、单甲基噻吩和双甲基噻吩质量分数为838×10-6、137×10-6~723×10-6和192×10-6~723×10-6下,对Co-Mo/Al2O3催化剂上裂解汽油催化加氢脱硫的宏观动力学进行了研究。以Powell优化法和Merson迭代法对动力学实验数据进行非线性参数估值,建立了良好吻合实验数据的、裂解汽油催化加氢脱硫的幂函数型宏观动力学模型。噻吩、单甲基噻吩和双甲基噻吩的反应级数分别为0.721、0.735和0.87,对应的加氢反应宏观活化能依次为70.0kJ·mol-1、67.9kJ·mol-1和59.9kJ·mol-1。各噻吩基硫的转化率均随反应压力的提高而增加,3.5MPa以上时,增加的趋势减缓;反应温度的提高有利于噻吩基硫转化率的增加;593K以上时,各硫化物的转化率随温度的增加呈现线性增加的趋势。  相似文献   

14.
含硫化合物热解规律的研究   总被引:2,自引:0,他引:2  
选择丁硫醚、叔丁硫醚、四氢噻吩、乙基苯基硫醚作为模型化合物,在模拟 催化裂化微反装置上考察了含硫化合物热解规律,在热解过程中,烷基含硫化合物转化程度与硫醚烃基结构、反应条件有关。异构含硫化合物比正构含硫化合物容易转化,反应温度升高,转化程度增大,转化产物主要为硫化氢和硫醇,只有少量四氢噻吩发生转化,反应温度升高论程度增加,大部分乙基苯基硫醚发生转化,生成苯硫酚和少量硫化氢;反应温度升高,转化程度增加。含硫化合物热解可能是通过自由基历程进行的。  相似文献   

15.
在微型高压釜中,于450℃、7.1MPa 氢初压的条件下,用菲作模型化合物,考察不同组成的载体对Ni-Mo 催化剂加氢裂解性能的影响。共使用了23种催化剂,其中有3种是目前石油工业中已经采用的定型催化剂,其余20种是自制的。实验发现,用稀土交换分子筛作载体时,催化剂的活性和选择性均较高。特别是以稀土交换Y 型分子筛和η-氧化铝混合物为载体时,反应的转化率可达80%以上。并且,该催化剂还具有一定的中心环裂解选择性。文末初步探讨了菲的加氢裂解反应机理。  相似文献   

16.
工业NiW/Al2O3催化剂上二苯并噻吩的加氢脱硫动力学   总被引:4,自引:2,他引:4  
以二苯并噻吩(DBT)为含硫模型化合物, 在高压滴流床反应装置中,考察了工业NiW/Al2O3催化剂(RN-10)的加氢脱硫(HDS)动力学规律,研究了氢分压(1.5 MPa~4.5 MPa)、氢油体积比(150~700)、液体质量空速(15 h-1~60 h-1)、反应温度(280 ℃~380 ℃)等对DBT的HDS反应结果的影响。结果表明,当氢分压和氢油体积比较大时,两者变化对DBT的转化率基本无影响;温度对DBT的转化率影响较大,提高温度可有效提高DBT的转化率,随着温度的升高,DBT转化率的增加逐渐变缓。采用2级平推流反应动力学模型对不同温度实验数据进行了拟合,求得了不同温度的表观反应速率常数,模型的相关系数>0.989。活化能计算结果表明,RN-10催化剂在高反应温度区(>330 ℃)的DBT的HDS活化能明显低于较低温度时的活化能,分别为13.4 kJ/mol和121.4 kJ/mol。对于RN-10催化剂,不可单纯地通过提高反应温度来大幅度提高HDS转化率。  相似文献   

17.
通过两步法制备了两种含苯并噁唑结构的环氧树脂双苯并二噁唑型环氧(DAROH-O)树脂与双酚A型苯并噁唑环氧(HOH-O)树脂,采用红外光谱和氢核磁共振波谱分析对树脂的结构进行了表征。结果表明:当以二氨基二苯基甲烷(DDM)为固化剂时,对于DAROH-O/DDM体系,采用Kissinger法和Ozawa法计算得到的表观反应活化能分别为176.92kJ/mol和175.36kJ/mol;对于HOH-O/DDM体系,采用Kissinger法和Ozawa法计算得到的表观反应活化能分别为198.45kJ/mol和196.15kJ/mol。热重分析结果表明这两种环氧树脂固化物的耐热性能均远高于普通双酚A环氧树脂/DDM固化物的耐热性能。固化物的失重过程包括两个阶段,第一阶段的分解出现在350~370℃,第二阶段的分解发生在600℃左右,属于苯并噁唑环的分解。  相似文献   

18.
催化裂化过程中含硫化合物转化规律的研究   总被引:12,自引:3,他引:9  
选择丁硫醚、叔丁硫醚、四氢噻吩和乙基苯基硫醚作为模化合物,在模拟固定床催化裂化微反装置上考察含硫化合物转化和分布规律,在催化裂化过程中,烷基硫醚可以完全转化,转化产物为硫化氢,反应条件对转化程度没有明显影响;环状含硫化合物的转化程度与反应条件、溶剂性质有关,转化产物主要为硫化氢和汪量噻吩,生产的噻吩可进一步发生烷基化反应,反应温度升高,溶剂供氢能力增强,硫化氢的收率增加;乙基苯基硫醚也可以完全转化,转化产物主要为硫化氢和苯硫酚,生成的苯硫酚可进一步发生烷基化反应,反应温度升高,溶剂供氢能力增强,硫化氢的收率增加。  相似文献   

19.
夏涛  任其龙  吴平东 《催化学报》2005,26(11):1011-1016
 采用 10,11-二氢辛可尼定修饰的Pt/γ-Al2O3 催化 2-氧代-4-苯基丁酸乙酯不对称加氢合成 (R)-2-羟基-4-苯基丁酸乙酯,考察了修饰剂用量、底物浓度、氢压和反应温度对加氢反应速率和光学选择性的影响. 结果表明,修饰剂用量和底物浓度在适中范围内对反应速率和光学选择性均较为有利;提高氢压和温度均能显著加快反应速率,但氢压对光学选择性影响不大,温度升高则不利于目标产物的生成. 根据反应动力学特征,认为修饰剂喹啉环平行吸附于Pt表面,被质子化后与以si面吸附在催化剂表面的底物作用,经过立体选择生成单一对映体. 用提出的反应机理推导出不对称加氢反应速率方程,可以较好地描述实验结果.  相似文献   

20.
1.用1,2-二(对甲苯胺基)乙烷与醛类缩合而得1,3-二(对甲苯基)-2-烃基四氢咪唑,在反应的专属性,缩合手续,产率及产物的熔点范围方面似均较前人用1,2-双苄胺基乙烷,1,2-二(对甲氧苄胺基)乙烷或1,2-二(对氯苄胺基)乙烷为佳. 2.改进1,2-二(对甲苯胺基)乙烷的合成方法,使产量提高,并消除副反应. 3.曾制备二十四种新的1,3-二(对甲苯基)-2-烃基四氢咪唑类化合物,和三种1,2-二(对甲苯胺基)乙烷的衍生物. 4.1,3-二(对甲苯基)-2-邻硝基苯四氢咪唑可用稀盐酸分解为相应的邻硝基苯甲醛和1,2-二(对甲苯胺基)乙烷的二盐酸盐,其反应几为定量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号