首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
制备低成本、高活性、高稳定性的铂(Pt)基氧还原反应(ORR)催化剂是质子交换燃料电池(PEMFC)大规模商业化应用的关键。以钴(Co)等非贵金属与Pt掺杂制备二元合金PtM催化剂不仅可以减少Pt用量,还可以获得高于Pt金属催化剂的ORR催化活性和稳定性。本研究使用浸渍还原法制备碳载铂钴ORR催化剂,通过控制热处理还原温度来控制纳米颗粒的结构、晶相、尺寸等,从而改善催化剂的ORR性能。XRD、TEM和电化学分析结果综合表明,热处理温度对纳米颗粒合金度和平均粒径有显著的影响,平均粒径和合金度随着热处理温度升高而增大。通过控制热处理温度可以获得粒径与合金度之间的最优值从而提高催化剂氧还原活性,实验表明,800℃是低粒径和高合金度的平衡点,在所有制备的催化剂中有最高的质量活性(0.41 A/mgPt)和稳定性。进一步的密度泛函理论(DFT)计算表明高合金度的Pt3Co结构表面可以降低速控步反应势垒,提高ORR活性。  相似文献   

2.
在无表面活性剂存在条件下,采用NaBH4还原CuCl_2得到Cu纳米颗粒,以此为助分散剂,进一步还原CuCl_2与K_2PtCl_4得到平均粒径为2.1 nm的PtCu合金纳米颗粒,并被担载到活性炭上.超小的单分散PtCu合金纳米颗粒表现出明显的晶格紧缩、一定程度的Pt表面偏析、较高比例的非氧化态Pt单质和较高的电子结合能,进而表现出较弱的Pt与含氧物种的吸附作用强度.半电池测试得到的0.9 V vs.RHE处氧还原催化(ORR)的面积比活性、质量比活性分别达到Pt/C(JM)的6.6倍和3.8倍,并且加速衰减测试后,ORR电催化活性优势仍很明显,表现出良好的稳定性.在全电池100 mA/cm~2测试条件下,超小的合金催化剂显示出优于Pt/C(JM)的电催化活性及稳定性.本文制备方法也可应用于得到担载型超小单分散PtCo、PtNi等合金纳米颗粒.  相似文献   

3.
利用钙钛矿型复合氧化物(PTO)可以将多种金属离子限域并均匀混合于钙钛矿晶格中的特点,提出了一种构筑氧化物修饰的纳米双金属催化剂团簇的新构想。以担载于大比表面积SiO_2上的钙钛矿型复合氧化物La_(1-y)Ce_yCo_(0.87)Pt_(0.13)O_3/SiO_2作为前驱体,将La、Ce、Co和Pt多种金属离子均匀混合并限域于PTO晶粒中,还原后得到Pt-Co/La-Ce-O/SiO_2催化剂;通过氮气吸附-脱附、XRD、H2-TPR和TEM等手段对Pt-Co/La-Ce-O/SiO_2催化剂进行了表征,考察了其对CO氧化的催化性能,研究了构效关系。结果发现,La-Ce-O-Pt-Co构成了纳米团簇,担载于SiO_2表面,形成了Pt-Co纳米双金属颗粒; Co修饰Pt提高了其催化活性,而添加Ce进一步改善了其催化性能。当Ce含量(y)为0.2时,催化剂La_(0.8)Ce_(0.2)Co_(0.87)Pt_(0.13)O_3/SiO_2的活性最佳,在120℃下即可实现CO完全转化,且在含体积分数15%H_2O及12.5%CO_2的气氛中仍具有较好的催化性能。稳定性测试表明,所制得的Pt-Co/La-Ce-O/SiO_2催化剂具有良好的稳定性和抗烧结性能。  相似文献   

4.
在本工作中,通过在氮气保护下热解Pt纳米颗粒结合的ZIF-67制备了由ZIF-67原位产生的氮掺杂碳负载Pt Co合金纳米颗粒组成的Pt Co-NC复合催化剂。通过X射线衍射,扫描电子显微镜,透射电子显微镜等物理表征手段研究了催化剂的结构和形貌,并测试了该催化剂对醇类燃料甲醇和乙醇氧化的电化学性能。与参比样Pt/C相比,Pt Co-NC催化剂的电催化活性与稳定性均得到了极大的提高,其优异的催化性能可以归因于抗一氧化碳中毒能力的提升和原位形成的Pt Co纳米颗粒和氮掺杂载体间的协同作用。  相似文献   

5.
Pt纳米粒子由于其本身独特的物理、化学性质以及能够同时促进氧化和还原反应,在工业生产和商业设备中(尤其在直接甲醇燃料电池中)广泛用作重要的电催化剂.然而,Pt作为贵金属在自然界中的含量极其稀少,价格昂贵;另外,甲醇氧化反应中产生的中间产物CO很容易市Pt纳米粒子中毒而失活.因此,迫切需要一种Pt用量少,催化性能高的材料.一制备高活性比表面积的Pt纳米颗粒,可以有效提高Pt利用率.另外,调控纳米粒子使其裸露特定的晶面、边、角以及缺陷也能有效提升催化性能.还可以采用Pt纳米粒子结合其它金属元素形成双金属合金,如,Pt-M(M=Pd,Au,Ag,Ru,Fe,Co,Ni,等)催化剂,可以在减少Pt元素用量的同时有效提升催化活性.在众多可供选择的元素中,Pd相对于Pt价格低廉,但两者具有相近的物理、化学性质以及较高的电催化性能,使Pt-Pd纳米合金呈现十分优异的电催化性能.研究表明,Pt-Pd纳米合金在酸性和CO环境中能有效催化有机小分子电氧化过程.另外,在酸性环境中,用Pd替代Cu,Ag,Co或Ni,可以有效减少催化剂的腐蚀.本文在乙二醇溶液中同时还原K_2PtCl_4和Na_2PdCl_4,在110°C反应5 h制备出超细的Pt-Pd纳米合金.通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)以及能谱仪(EDS)对合金进行表征,从而确定产物为尺寸4 nm左右的Pt-Pd纳米合金,且通过改变金属前驱体的投料比可以有效调控Pt-Pd合金组分(按元素比例分别表示为Pt1Pd3,Pt1Pd1,Pt3Pd1).采用循环伏安法、线性扫描伏安法以及计时安培法等多种手段测试样品在0.5 mol/L H_2SO_4和0.5mol/L CH_3OH的酸性环境中(50 mV/s)电化学性能,并与商业Pt/C进行比较.结果表明,合金的催化性能和组分密切相关,当Pt元素的含量为75%左右时,Pt-Pd纳米合金表现出最佳的催化活性和稳定性,其中Pt_3Pd_1的电催化质量活性可达商业Pt/C的7倍之多.我们把Pt-Pd纳米合金的催化性能对其组分的依赖性归结为甲醇氧化反应中的双官能团机制,反应中,Pt可有效催化甲醇脱氢产生Pt-CO,Pd则催化水脱氢形成Pd-OH.当Pd含量减少时,Pt表面的水脱氢反应只有在高电位才能发生,从而降低催化效率;而Pd含量过多,则会抑制Pt催化甲醇的脱氢反应,使催化效率大大降低.因此,只有适宜Pt/Pd比例,才能有效提升催化效率.  相似文献   

6.
燃料电池因其高的能量转化效率和无污染的特点而被认为是目前最有发展前景的高效清洁发电技术,然而燃料电池迟缓的阴极氧还原反应(ORR)极大地降低了其整体性能.目前,铂碳(Pt/C)仍然是催化ORR最有效的催化剂.但是,由于Pt的价格很高以及其稳定性差等缺点极大地限制了燃料电池的大规模化应用,因此设计与开发廉价高效稳定的ORR电催化剂对实现燃料电池的大规模商业化应用具有重要的意义.在过去的几十年中,研究发现Pt和其他的非贵金属形成合金,如Pt-Fe,Pt-Ni和Pt-Co等不仅可以降低Pt的用量,而且也可以使所得催化剂具有较高的ORR活性.此外,研究发现核-壳结构也可以提高铂基ORR催化剂的活性与稳定性.但是,这些催化剂的制备一般会使用毒性和危险性较高的有机化学试剂并且其制备过程繁杂,因此并不适用于大规模的实际生产.从这个角度来说,开发一种简易的方法来制备高效廉价的ORR催化剂显得尤为重要.之前的研究表明,Pt的载体对提高所得ORR催化剂来说非常关键.可以发现大部分载体都是经过改进的碳材料,如微孔/介孔材料,杂原子掺杂的石墨烯以及缺陷碳等.尤其是我们课题组最近提出的一种缺陷催化机理表明,在碳材料中特定类型的缺陷(如缺陷活性炭(D-AC)和缺陷石墨烯等)可以使纯的碳材料具有很高的电催化活性.尽管D-AC的ORR催化活性在不含金属的催化剂中位居前列,但是其催化性能仍然比商业化的Pt/C差.鉴于此,如果我们可以通过使用具有较高ORR催化活性的D-AC作为Pt的载体而降低Pt的用量,但并不牺牲其催化活性,这将是一个很具有前景的方法来解决昂贵ORR催化剂的问题,进而有可能实现燃料电池的大规模化生产.在本研究中,我们通过一种简易的液相浸渍法以D-AC作为Pt的载体而制备了一种高效的ORR催化剂.具体来说,我们通过调节合成过程中的还原温度实现了控制所得催化剂中Pt颗粒尺寸的目的,同时我们也对催化剂中的Pt含量对其催化性能的影响进行了探讨.研究表明,所得催化剂中Pt的颗粒尺寸以及其结晶性都可能影响其ORR催化活性.更为重要的是,所得样品D-AC@5.0%Pt中含有约5 wt%的Pt,然而其在碱性条件下的ORR催化活性已经超过了商业化的含有20 wt%Pt的Pt/C,例如其起始电位和半波电位都优于商业化的Pt/C,并且其稳定性也比商业化的Pt/C好.除此之外,D-AC@5.0%Pt在催化ORR的过程中表现出了一种一步四电子的反应路径,而且中间产物过氧化氢的产率很低.所得催化剂D-AC@5.0%Pt优异的ORR反应活性表明D-AC中的特殊缺陷以及负载的Pt纳米颗粒都对提高其催化活性具有很大的贡献,同时也说明选择合适的载体对提高电催化剂的活性至关重要.实验结果还表明,D-AC@5.0%Pt在酸性条件下的ORR催化活性也有一定的提高,虽然比商业化的Pt/C要差一些.更进一步减小Pt的颗粒尺寸到亚纳米甚至原子级别可能会明显地提高其在酸性电解液中的ORR催化活性.  相似文献   

7.
燃料电池因其高的能量转化效率和无污染的特点而被认为是目前最有发展前景的高效清洁发电技术,然而燃料电池迟缓的阴极氧还原反应(ORR)极大地降低了其整体性能.目前,铂碳(Pt/C)仍然是催化ORR最有效的催化剂.但是,由于Pt的价格很高以及其稳定性差等缺点极大地限制了燃料电池的大规模化应用,因此设计与开发廉价高效稳定的ORR电催化剂对实现燃料电池的大规模商业化应用具有重要的意义.在过去的几十年中,研究发现Pt和其他的非贵金属形成合金,如Pt-Fe,Pt-Ni和Pt-Co等不仅可以降低Pt的用量,而且也可以使所得催化剂具有较高的ORR活性.此外,研究发现核-壳结构也可以提高铂基ORR催化剂的活性与稳定性.但是,这些催化剂的制备一般会使用毒性和危险性较高的有机化学试剂并且其制备过程繁杂,因此并不适用于大规模的实际生产.从这个角度来说,开发一种简易的方法来制备高效廉价的ORR催化剂显得尤为重要.之前的研究表明,Pt的载体对提高所得ORR催化剂来说非常关键.可以发现大部分载体都是经过改进的碳材料,如微孔/介孔材料,杂原子掺杂的石墨烯以及缺陷碳等.尤其是我们课题组最近提出的一种缺陷催化机理表明,在碳材料中特定类型的缺陷(如缺陷活性炭(D-AC)和缺陷石墨烯等)可以使纯的碳材料具有很高的电催化活性.尽管D-AC的ORR催化活性在不含金属的催化剂中位居前列,但是其催化性能仍然比商业化的Pt/C差.鉴于此,如果我们可以通过使用具有较高ORR催化活性的D-AC作为Pt的载体而降低Pt的用量,但并不牺牲其催化活性,这将是一个很具有前景的方法来解决昂贵ORR催化剂的问题,进而有可能实现燃料电池的大规模化生产.在本研究中,我们通过一种简易的液相浸渍法以D-AC作为Pt的载体而制备了一种高效的ORR催化剂.具体来说,我们通过调节合成过程中的还原温度实现了控制所得催化剂中Pt颗粒尺寸的目的,同时我们也对催化剂中的Pt含量对其催化性能的影响进行了探讨.研究表明,所得催化剂中Pt的颗粒尺寸以及其结晶性都可能影响其ORR催化活性.更为重要的是,所得样品D-AC@5.0%Pt中含有约5 wt%的Pt,然而其在碱性条件下的ORR催化活性已经超过了商业化的含有20 wt%Pt的Pt/C,例如其起始电位和半波电位都优于商业化的Pt/C,并且其稳定性也比商业化的Pt/C好.除此之外,D-AC@5.0%Pt在催化ORR的过程中表现出了一种一步四电子的反应路径,而且中间产物过氧化氢的产率很低.所得催化剂D-AC@5.0%Pt优异的ORR反应活性表明D-AC中的特殊缺陷以及负载的Pt纳米颗粒都对提高其催化活性具有很大的贡献,同时也说明选择合适的载体对提高电催化剂的活性至关重要.实验结果还表明,D-AC@5.0%Pt在酸性条件下的ORR催化活性也有一定的提高,虽然比商业化的Pt/C要差一些.更进一步减小Pt的颗粒尺寸到亚纳米甚至原子级别可能会明显地提高其在酸性电解液中的ORR催化活性.  相似文献   

8.
通过两步还原法制备了Pd/Ni双金属催化剂.由于金属Pd原子在先行还原的Ni纳米粒子表面的外延生长以及其在Ni表面及Pd表面生长表现出的吉布斯自由能差异,最终导致了异结构Pd/Ni纳米粒子的形成.高分辨电子透射显微镜结果证实了异结构的存在,然而X射线衍射测量表明Pd/Ni纳米粒子具有类似于Pd的面心立方结构.制备的Pd/Ni纳米粒子与同等条件下合成的Pd纳米粒子相比对甲酸氧化呈现了更高的电催化活性,而且电催化稳定性也要明显优于纯Pd纳米粒子,证明Pd/Ni双金属催化剂是可选的直接甲酸燃料电池阳极催化剂.双金属催化剂对甲酸氧化电催化活性和稳定性增强可能是Ni原子的修饰改变了Pd粒子表面配位不饱和原子的电子结构所致.  相似文献   

9.
分别在酸性和碱性电解质中研究了界面合金化的纳米Ag承载Pt纳米结构催化剂Pt0.5^Ag-B/C(Pt/Ag原子比为0.5)对氧还原反应(ORR)的电催化特点.结果表明,该催化剂对ORR的半波电势(E1/2)与通常的Pt/C催化剂(E-TEK公司)相当,但前者的本征电催化活性是后者的近两倍.与未合金化的Pt0.5^Ag-A/C相比,在Pt0.5^Ag-B/C催化剂中形成的合金化的Pt/Ag界面不仅使ORR的E1/2正移,而且明显提高了贵金属Pt的分散度或利用率.  相似文献   

10.
闫绍兵  焦龙  何传新  江海龙 《化学学报》2022,80(8):1084-1090
燃料电池阴极氧还原(ORR)催化剂目前主要以商业Pt/C为主, 其高成本和稀缺性极大地限制了燃料电池的广泛应用. 为了替代Pt/C催化剂, 廉价高效的非贵金属催化剂目前受到了广泛的研究和关注. 利用氧化石墨烯(GO)为诱导模板, 借助表面丰富的含氧官能团, 实现了Co基金属有机框架材料(MOF) (ZIF-67)在GO表面的原位生长, 构筑了ZIF-67/GO层状复合材料. 热解过程中, 石墨烯的存在有效抑制了Co纳米颗粒的团聚, 并且很好地维持了原始的层状结构. 最终获得的Co@N-C/rGO复合催化剂材料实现了活性位的高度分散, 并且具有丰富的孔结构和优异的导电性能. 在电化学性能测试中Co@N-C/rGO表现出优异的ORR性能, 其起始电位为0.96 V, 半波电位0.83 V, 远优于ZIF-67直接热解得到的Co@N-C材料, 且性能与商业Pt/C催化剂相当. 此外, Co@N-C/rGO复合催化剂还表现出良好的催化稳定性和甲醇耐受性, 显示出该材料作为燃料电池氧还原催化剂的重要潜力.  相似文献   

11.
Pt纳米粒子由于其本身独特的物理、化学性质以及能够同时促进氧化和还原反应,在工业生产和商业设备中(尤其在直接甲醇燃料电池中)广泛用作重要的电催化剂.然而,Pt作为贵金属在自然界中的含量极其稀少,价格昂贵;另外,甲醇氧化反应中产生的中间产物CO很容易市Pt纳米粒子中毒而失活.因此,迫切需要一种Pt用量少,催化性能高的材料.一制备高活性比表面积的Pt纳米颗粒,可以有效提高Pt利用率.另外,调控纳米粒子使其裸露特定的晶面、边、角以及缺陷也能有效提升催化性能.还可以采用Pt纳米粒子结合其它金属元素形成双金属合金,如,Pt-M (M = Pd,Au,Ag,Ru,Fe,Co,Ni,等)催化剂,可以在减少Pt元素用量的同时有效提升催化活性.在众多可供选择的元素中,Pd相对于Pt价格低廉,但两者具有相近的物理、化学性质以及较高的电催化性能,使Pt-Pd纳米合金呈现十分优异的电催化性能.研究表明,Pt-Pd纳米合金在酸性和CO环境中能有效催化有机小分子电氧化过程.另外,在酸性环境中,用Pd替代Cu,Ag,Co或Ni,可以有效减少催化剂的腐蚀.本文在乙二醇溶液中同时还原K2PtCl4和Na2PdCl4,在110 ℃C反应5 h制备出超细的Pt-Pd纳米合金.通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)以及能谱仪(EDS)对合金进行表征,从而确定产物为尺寸4 nm左右的Pt-Pd纳米合金,且通过改变金属前驱体的投料比可以有效调控Pt-Pd合金组分(按元素比例分别表示为Pt1Pd3,Pt1Pd1,Pt3Pd1).采用循环伏安法、线性扫描伏安法以及计时安培法等多种手段测试样品在0.5 mol/L H2SO4和0.5 mol/L CH3OH的酸性环境中(50 mV/s)电化学性能,并与商业Pt/C进行比较.结果表明,合金的催化性能和组分密切相关,当Pt元素的含量为75%左右时,Pt-Pd纳米合金表现出最佳的催化活性和稳定性,其中Pt3Pd1的电催化质量活性可达商业Pt/C的7倍之多.我们把Pt-Pd纳米合金的催化性能对其组分的依赖性归结为甲醇氧化反应中的双官能团机制,反应中,Pt可有效催化甲醇脱氢产生Pt-CO,Pd则催化水脱氢形成Pd-OH.当Pd含量减少时,Pt表面的水脱氢反应只有在高电位才能发生,从而降低催化效率;而Pd含量过多,则会抑制Pt催化甲醇的脱氢反应,使催化效率大大降低.因此,只有适宜Pt/Pd比例,才能有效提升催化效率.  相似文献   

12.
赵东江  尹鸽平魏杰 《化学进展》2009,21(12):2753-2759
简要介绍了聚合物膜燃料电池(PEMFC)的特点及其存在的主要技术问题。综述了PEMFC阴极非Pt催化剂的研究进展,重点讨论了过渡金属硫族化合物、过渡金属合金、过渡金属氮化物、过渡金属氧化物以及过渡金属大环化合物等非Pt催化剂对氧还原反应(ORR)的催化活性、化学或电化学稳定性以及耐甲醇能力等性能,提出了阴极非Pt催化剂存在的问题以及发展趋势。Ru基硫族化合物、Pd基合金和过渡金属大环化合物催化剂具有良好的性能,有望成为PEMFC阴极Pt基催化剂的替代材料。  相似文献   

13.
通过热解自聚合多巴胺法制备了氮掺杂空心碳微球(N-HCMS), 并采用微波辅助乙二醇还原方法把Pt纳米粒子负载于N-HCMS上制得了Pt/N-HCMS催化剂. 催化剂的表面形貌、晶体结构及其比表面积和孔径分布等分别采用扫描电子显微镜、透射电子显微镜、X射线衍射仪及比表面分析仪等进行表征. 采用循环伏安法和线性扫描伏安法研究了Pt/N-HCMS 催化剂在酸性条件下的电催化氧还原性能. Pt/N-HCMS 催化剂由于Pt纳米粒子的均匀分散、N-HCMS载体的快速电子传递及其独特的微孔和中空结构而具有很高的电催化氧还原活性, 其质量比活性是E-TEK Pt/C 催化剂的近两倍. Pt/N-HCMS 催化剂还具有优良的稳定性. 本工作对于开发高性能的燃料电池阴极催化剂具有重要意义.  相似文献   

14.
质子交换膜燃料电池(PEMFC)因能量转化率高、电流密度大、对负荷响应快及环境友好等优点而应用前景广阔.然而,Pt基催化剂的大量使用使得PEMFC成本居高不下,阻碍了其商业化进程.金属Ir具有良好的稳定性和相比Pt较低的成本,可替代金属Pt催化燃料电池阳极氢氧化反应.但是,Ir基催化剂的催化活性比Pt低,难以满足商业化要求.通过合金调控Ir纳米晶的电子结构和几何结构是降低Ir用量、提高Ir催化剂氢氧化活性的有效方法.本文研究了Ir基合金纳米晶中合金元素(Fe,Ni,Co)所产生的合金效应在酸碱性介质中对催化氢氧化的影响.采用溶剂蒸发-氢气还原法合成了具有相近合金度且平均粒径小于5 nm的Ir Fe,Ir Ni和Ir Co纳米合金催化剂.电化学测试表明,Ir Ni合金催化剂具有最高的催化氢氧化活性.在酸性介质中,Ir Ni合金催化剂的质量比活性达到152 A/gIr(@0.1 V vsRHE),高于Ir Fe(146 A/gIr)和Ir Co(133 A/gIr)合金催化剂以及商业化Pt/C催化剂(116 A/gPt).而在碱性介质中,Ir基合金催化剂活性较酸性介质中低,各合金催化剂优劣次序与酸性介质中一致.结构分析表明,合金化致使Ir晶格收缩,收缩程度以Ir Fe,Ir Ni和IrCo的顺序依次降低.Ir Ni合金催化剂中Ni合金元素诱导Ir发生晶格收缩适中,使催化剂与中间物种(H_(ad),OH_(ad))的相互作用适度,从而获得最优的催化性质.另外,合金效应在不同pH介质中影响不一:在酸性介质中,由合金元素(Fe,Ni,Co)导致的Ir–H_(ad)相互作用弱化是提高氢氧化活性的主要原因;在碱性介质中,催化剂表面的亲氧效应决定了电极表面的OH_(ad)吸/脱附性质和H_(ad)表面覆盖度,从而影响催化氢氧化活性.  相似文献   

15.
质子交换膜燃料电池(PEMFC)因能量转化率高、电流密度大、对负荷响应快及环境友好等优点而应用前景广阔.然而, Pt基催化剂的大量使用使得 PEMFC成本居高不下,阻碍了其商业化进程.金属 Ir具有良好的稳定性和相比 Pt较低的成本,可替代金属 Pt催化燃料电池阳极氢氧化反应.但是, Ir基催化剂的催化活性比 Pt低,难以满足商业化要求.通过合金调控 Ir纳米晶的电子结构和几何结构是降低 Ir用量、提高 Ir催化剂氢氧化活性的有效方法.
  本文研究了 Ir基合金纳米晶中合金元素(Fe, Ni, Co)所产生的合金效应在酸碱性介质中对催化氢氧化的影响.采用溶剂蒸发-氢气还原法合成了具有相近合金度且平均粒径小于5 nm的 IrFe, IrNi和 IrCo纳米合金催化剂.电化学测试表明, IrNi合金催化剂具有最高的催化氢氧化活性.在酸性介质中, IrNi合金催化剂的质量比活性达到152 A/gIr (@0.1 V vs RHE),高于 IrFe (146 A/gIr)和IrCo (133 A/gIr)合金催化剂以及商业化 Pt/C催化剂(116 A/gPt).而在碱性介质中, Ir基合金催化剂活性较酸性介质中低,各合金催化剂优劣次序与酸性介质中一致.结构分析表明,合金化致使 Ir晶格收缩,收缩程度以 IrFe, IrNi和 IrCo的顺序依次降低. IrNi合金催化剂中 Ni合金元素诱导 Ir发生晶格收缩适中,使催化剂与中间物种(Had, OHad)的相互作用适度,从而获得最优的催化性质.另外,合金效应在不同 pH介质中影响不一:在酸性介质中,由合金元素(Fe, Ni, Co)导致的 Ir–Had相互作用弱化是提高氢氧化活性的主要原因;在碱性介质中,催化剂表面的亲氧效应决定了电极表面的 OHad吸/脱附性质和 Had表面覆盖度,从而影响催化氢氧化活性.  相似文献   

16.
罗瑾  杨乐夫  陈秉辉  钟传建 《电化学》2012,18(6):496-507
质子交换膜燃料电池作为重要的电化学能源转换装置,在提高能量转换效率、减少环境污染等方面具有诱人的前景.然而,阴极氧还原过电位较大、活性较低、稳定性差,且铂基催化剂昂贵,使该燃料电池难以商业化.纳米结构电催化剂的发展有望解决此难题。对纳米合金电催化剂其组分和结构的设计是开发高活性、高稳定性和低成本的燃料电池电催化剂的重要因素.本文综述了近期由分子设计和热化学控制处理法制备的三元纳米合金电催化剂对燃料电池氧还原反应催化性能的最新进展.该方法可控制纳米合金的尺寸、组成以及二元和三元纳米催化剂的合金化程度.以高活性的三元纳米合金催化剂PtNiCo/C为例,综述了在设计燃料电池电催化剂时结构和组成的纳米级调优的重要性.PtNiCo/C电催化剂的质量比活性远高于其二元合金催化剂和Pt/C商业电催化剂.三元电催化剂的催化活性可通过控制其组成来调节.文章还讨论了三元纳米合金催化剂的结构及其协同效应对增强其电催化性能的影响.  相似文献   

17.
李石波  田植群  刘洋  蒋政  哈森  陈兴发  帕纳斯  沈培康 《催化学报》2021,42(4):648-657,中插48-中插50
燃料电池是电动汽车和电子设备最有前途的清洁能源之一.Pt催化剂在氧还原反应(ORR)和甲醇氧化反应(MOR)中的电催化性能对电池系统的能源效率和电池的价格起着至关重要的作用,因此设计高效的电催化剂以最大限度地提高铂的利用率,从而增强电催化效果、降低成本,已经成为燃料电池发展的一个重要方向.早期的研究表明,铂基催化剂可以有效地提高电催化性能,并且它们的组成和形貌被认为是影响催化剂活性的两个关键因素.至今,已合成出各种各样的Pt基催化剂,如Pt-Pb/Pt核壳纳米盘、Pt3Co凹面立方体、Pt-Cu-Rh纳米笼、Pt-Pd纳米枝晶等,其中纳米枝晶结构的催化剂表现出很好的氧还原性能,其高效的催化活性被认为是暴露出的较高的比表面积促进了电子转移以及拥有较多的Pt活性位点.本文采用简单的溶剂热法合成了具有大比表面积的Pt-Ni分层骨架结构(Pt-Ni HSNs)催化剂,为了验证反应物所起的作用,通过收集不同反应时间下的产物和控制单一变量,我们发现在合成配方中加入H2SO4是此类Pt-Ni纳米晶体成功生长的关键触发因素.在H2SO4的诱导下,Pt和Ni原子倾向于沉积在(111)面,促使Pt-Ni合金沿晶面方向生长为八面体结构,在此过程中发生了粒子自组装成长以及相分离过程,最后我们用酸蚀法制造了Pt-Ni HSNs,并通过TEM,XRD和XPS表征其微观结构及组成,证实了Pt-Ni HSNs已经形成合金结构.在酸性条件下,Pt-Ni HSNs在ORR反应中展示出比商业Pt/C更好的活性.在0.9 V时的质量活性为1.25 A mgpt–1,是商业Pt/C质量活性的8.9倍,并且在10000圈的耐久性测试中,Pt-Ni HSNs的质量活性仅仅损失了21.6%,远低于Pt/C损失的活性比例.Tafel曲线和旋转环盘测试结果表明,Pt-Ni HSNs在ORR反应中发生的是4电子过程,证实了它的高活性.另外,在酸性溶液中,Pt-Ni HSNs表现出了比商业Pt/C更好的MOR催化活性,且抗CO中毒能力更强.这可归因于两点:(1)Pt-Ni HSNs是由多个小颗粒组装而成,大大提高了与电解液的接触面积;(2)它独特的骨架结构减少了颗粒间团聚的可能性,有利于质子的转移.本文为设计先进的铂基电催化剂提供了一种新的自组装方法.  相似文献   

18.
李石波  田植群  刘洋  蒋政  哈森  陈兴发  帕纳斯  沈培康 《催化学报》2021,42(4):648-657,中插48-中插50
燃料电池是电动汽车和电子设备最有前途的清洁能源之一.Pt催化剂在氧还原反应(ORR)和甲醇氧化反应(MOR)中的电催化性能对电池系统的能源效率和电池的价格起着至关重要的作用,因此设计高效的电催化剂以最大限度地提高铂的利用率,从而增强电催化效果、降低成本,已经成为燃料电池发展的一个重要方向.早期的研究表明,铂基催化剂可以有效地提高电催化性能,并且它们的组成和形貌被认为是影响催化剂活性的两个关键因素.至今,已合成出各种各样的Pt基催化剂,如Pt-Pb/Pt核壳纳米盘、Pt3Co凹面立方体、Pt-Cu-Rh纳米笼、Pt-Pd纳米枝晶等,其中纳米枝晶结构的催化剂表现出很好的氧还原性能,其高效的催化活性被认为是暴露出的较高的比表面积促进了电子转移以及拥有较多的Pt活性位点.本文采用简单的溶剂热法合成了具有大比表面积的Pt-Ni分层骨架结构(Pt-Ni HSNs)催化剂,为了验证反应物所起的作用,通过收集不同反应时间下的产物和控制单一变量,我们发现在合成配方中加入H2SO4是此类Pt-Ni纳米晶体成功生长的关键触发因素.在H2SO4的诱导下,Pt和Ni原子倾向于沉积在(111)面,促使Pt-Ni合金沿晶面方向生长为八面体结构,在此过程中发生了粒子自组装成长以及相分离过程,最后我们用酸蚀法制造了Pt-Ni HSNs,并通过TEM,XRD和XPS表征其微观结构及组成,证实了Pt-Ni HSNs已经形成合金结构.在酸性条件下,Pt-Ni HSNs在ORR反应中展示出比商业Pt/C更好的活性.在0.9 V时的质量活性为1.25 A mgpt–1,是商业Pt/C质量活性的8.9倍,并且在10000圈的耐久性测试中,Pt-Ni HSNs的质量活性仅仅损失了21.6%,远低于Pt/C损失的活性比例.Tafel曲线和旋转环盘测试结果表明,Pt-Ni HSNs在ORR反应中发生的是4电子过程,证实了它的高活性.另外,在酸性溶液中,Pt-Ni HSNs表现出了比商业Pt/C更好的MOR催化活性,且抗CO中毒能力更强.这可归因于两点:(1)Pt-Ni HSNs是由多个小颗粒组装而成,大大提高了与电解液的接触面积;(2)它独特的骨架结构减少了颗粒间团聚的可能性,有利于质子的转移.本文为设计先进的铂基电催化剂提供了一种新的自组装方法.  相似文献   

19.
SnO2-TiO2薄膜载体对Au-Pt纳米颗粒电化学性能的影响   总被引:1,自引:1,他引:0  
采用真空镀膜法在玻碳(GC)电极表面修饰SnO2-TiO2薄膜, 在SnO2-TiO2/GC复合电极表面组装Au-Pt双金属纳米颗粒, 制得Au-Pt/SnO2-TiO2/GC复合电极. 通过循环伏安法(CV)研究了SnO2-TiO2薄膜载体对Au-Pt双金属纳米颗粒电化学性能的影响; 采用扫描电镜(SEM)及X射线光电子能谱(XPS)对Au-Pt在SnO2-TiO2薄膜沉积的形貌及结构进行了表征. 研究结果表明, 10 nm的Au-Pt双金属纳米颗粒均匀地组装于SnO2-TiO2薄膜表面; SnO2-TiO2薄膜载体改善了复合电极抗CO中毒能力; Au-Pt双金属合金的形成提高了Pt 对甲醇氧化的电催化能力, SnO2-TiO2薄膜载体又使Pt纳米粒子d空轨道增多, 提高了Au-Pt双金属纳米颗粒的稳定性和催化性能.  相似文献   

20.
李晶  孙翔  段永正  贾冬梅  李跃金  王建国 《催化学报》2021,42(6):963-970,中插15-中插16
燃料电池具有能量转换效率高的优点,是能量转换与储存的高效器件之一.目前,燃料电池阴极氧还原反应(ORR)动力学缓慢,并且催化ORR大量使用铂碳(Pt/C)催化剂,由于Pt储量少,价格高,载体碳材料易发生碳蚀导致催化剂稳定性降低,限制了其进一步商业化应用.钯(Pd)与Pt为同族元素,具有相似的电子结构和化学性质,其储量是Pt的50倍,同时,Pd具有良好的抗甲醇毒性和抗一氧化碳毒性,因此,被视为燃料电池中阴极Pt催化剂的潜在替代品.但商用Pd/C催化剂的ORR活性较Pt/C差,因此,大量的研究工作集中在提高Pd基ORR催化剂的活性方面:将Pd与具有3d轨道的金属形成合金或将Pd负载到不同的载体上.通过选择合适的载体影响Pd的电子结构,从而提高催化剂活性和稳定性,是一种较简单的、有利于规模化生产Pd基ORR催化剂的方法.碳化硅(SiC)具有良好的电化学稳定性、热稳定性、机械强度和较强的供电子能力,可被用作ORR的金属催化剂载体.然而,由于金属与SiC作用较弱,需要制备特殊形貌的SiC或将SiC表面改性;通常,这些SiC基载体的制备过程复杂并且成本高.而在有氧条件下制备、保存或使用SiC时,其表面不可避免地被氧化,这种在温和条件下生成的表面具有含氧官能团的SiC,由于制备过程简便,可以大规模生产,且与金属有强的相互作用,是一种很有前景的ORR的Pd基催化剂载体.对于用于替代Pt基催化剂的负载型Pd基ORR催化剂的开发和大规模制造来说,对载体表面改性的深入了解是一个重要并且具有挑战性的课题.目前尚未发现关于SiC表面的含氧基团对ORR性能影响的报道.因此,详细考察SiC载体上含氧基团在ORR中的作用对于理解、设计和开发具有优异ORR性能的SiC负载催化剂至关重要.本文采用沉积沉淀法在表面部分氧化的碳化硅(O-SiC)均匀负载了平均直径为5.2 nm的Pd纳米颗粒.与20 wt%商业Pt/C相比,制备的2.5 wt%Pd/O-SiC催化剂显示出较好的ORR活性(半波电位正向移动10 mV),较好的稳定性(10 h后,电流密度损失3.5%vs.34.9%),和较高的抗甲醇毒性.结构表征及密度泛函理论(DFT)计算结果表明,与Pd/C相比,Pd/O-SiC具有优异的ORR性能主要是由于O-SiC载体对Pd纳米颗粒具有电子调控作用,使Pd带负电.富电子Pd增强了ORR关键中间体OOH的吸附,降低了反应的吉布斯自由能,从而提高了ORR活性.另外,O-SiC载体对Pd纳米颗粒具有大的结合能和较好的SiC稳定性,增强了Pd/O-SiC催化剂的抗甲醇毒性及稳定性.DFT计算结果表明,SiC表面部分氧化后,仍保持对Pd的较高结合能,同时大幅增强了催化剂对中间体的吸附,降低了ORR关键电化学步骤吉布斯自由能,从而提高了氧还原性能.因此,本工作明确了SiC表面氧化的作用,同时提供了一种简易大规模制备高效负载型铂基替代ORR催化剂的策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号