首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
他得安  王威琪 《应用声学》2013,32(3):199-204
超声背散射法评价松质骨状况及诊断骨质疏松症是近年来医学超声领域内的研究热点之一,现已取得了显著的进展。本文将介绍近年来超声背散射法及其参量评价松质骨状况的研究进展,并分析超声背散射相关参量频谱质心偏移量(SCS)和平均骨小梁间距(TbSp)与骨矿密度(BMD)的相关性。研究结果表明,超声背散射参量与BMD有较高的相关性。最后提出了将来研究中需要努力的方向。  相似文献   

2.
超声诊断骨质疏松症中松质骨的模型   总被引:1,自引:0,他引:1       下载免费PDF全文
骨质疏松症(OP)是老龄化社会中影响健康的一个重要问题,超声技术已成为诊断骨质疏松症的一种常用方法。文中综述了近年来用超声诊断骨质疏松症中松质骨模型研究的进展,对棒状模型、流体多孔介质模型(Biot理论)和层状模型(schoenberg理论)进行了分析和讨论,指出了各理论模型存在的缺陷,对下一步的研究工作提出了建议。  相似文献   

3.
黄凯  他得安  王威琪 《应用声学》2009,28(4):308-313
骨质疏松症是一种骨强度下降的全身性骨骼疾病,骨强度的下降是骨量减少和骨微结构退化的共同结果。相比于传统的超声透射方法,超声背散射法可提供更多的骨微结构信息,而对于松质骨结构的建模能有助于结构信息的获取。本文将骨小梁简化为单圆柱模型(圆柱状的单根骨小梁浸于骨髓中),并基于此模型对超声背散射与频率的关系进行分析。用铝线代替骨小梁做仿体实验,通过实验与理论结果的比较来验证单圆柱模型的可行性。  相似文献   

4.
骨质的定期检测对骨质疏松的防治至关重要。本文研究了骨质疏松对超声导波在人体长骨中传播的影响。提出采用多尺度小波变换方法对接收到的导波信号进行处理,通过分析在不同传播距离下高阶小波细节分量所占信号总能量的变化,来判断是否患有骨质疏松症。在13位志愿者的小腿胫骨上进行超声测量,得到导波信号。经多尺度小波变换方法的分析处理结果显示在13位志愿者中,有7位志愿者的超声导波信号随着传播距离的改变,其主要频率成分发生了明显的变化,显示这7位志愿者患有骨质疏松症。这一诊断结果与X射线技术诊断结果相比,准确率可以达到92.3%,表明本文所提出的利用小波多尺度变换方法对长骨进行超声诊断具有较好的潜力。   相似文献   

5.
超声医学   总被引:1,自引:0,他引:1  
冯若 《物理》1991,20(1):39-42
超声波既是一种波动又是一种能量形式.利用这些性质发展了超声诊断和超声医疗.超声诊断和超声医疗以及超声在医学中的其他应用构成了内容极为新颖、丰富的超声医学.  相似文献   

6.
余紫莹  许勇  杨军  沈钧贤 《应用声学》2013,32(6):501-507
骨导超声听觉感知是超声振动通过头骨传导产生听觉感知的一种特殊现象。本文首先介绍了骨导超声听觉感知研究领域的国内外发展现状,在此基础上设计了一套骨导超声听觉感知测试系统,并完成了系统的软、硬件平台实现。利用该系统,分别对听力正常和听力障碍被试者进行了主观测试,围绕单频超声感知效果及单频可听声、汉语语音由超声载波调制后的感知效果开展研究,比较了多种不同调制方式下的主观感知效果,并分析了空气传导声对实验结果的影响。  相似文献   

7.
冯若  王志刚 《应用声学》1997,16(1):46-46
由中国声学学会生物医学超声工程分会、四川省声学学会医学超声学会、重庆超声医学工程学会及重庆医科大学附属第二医院联合举办的“全国超声医学诊断、治疗及工程学学术会议”于1996年9月17日至20日在重庆市召开,重庆市政府及重庆医科大学等领导到会祝贺.来自全国各地的216名代表及知名专家参加了会议.会议安排了专题报告论文22篇,交流论文222篇,个案报导99篇.论文内容较全面地反映了国内外超声医疗诊断、治疗及工程学应用与研究的现状及发展前景.超声诊断的论文内容遍及到心脏、腹部、妇产、泌尿、小器官、胸部、颅脑及外周血管等各方面;超声治疗方面的论文则突出反映了我国在超声抗早孕及高强聚焦超声(HIFC)治  相似文献   

8.
甄彦 《应用声学》2006,25(2):68-68
该项目自1991年起进行了三维超声成像研究,立足国际前沿,取得较好的成绩。(1)1991年自行开发三维成像装置,国内最早重建静态薄壳型心脏三维图像;1994年率先研制出三维超声表面成像软件,首次建立肝脏静脉系统的三维灰阶及血管树图像。(2)1995年引进TomTec三维工作站,最先提出动态三维心脏多普勒血流灰阶成像方法;1996年研制了室壁运动三维定性和定量分析软件;1999年探讨三维彩色多普勒血流显像技术。(3)在国内率先对实时彩色三维超声成像在多种心脏疾病中的诊断价值进行了验证和评价。(4)确立了三维超声成像的最佳技术参数和基准参考切面,提出新的诊断标准。(5)参与制定《三维超声心动图检查指南》,使我国在该领域的研究始终与国外保持同步。  相似文献   

9.
三种肿瘤细胞对超声结合血卟啉敏感性的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
实验采用频率为1.6MHz,强度为1W/cm^2、3W/cm^2、5W/cm^2、7W/cm^2的聚焦超声结合血卟啉分别对腹水型小鼠S180细胞(Sarcomal80,S180)、艾氏腹水瘤细胞(Ehrlich Ascites Tumor,EAT)及H-22肝癌细胞进行杀伤效应研究,利用台盼蓝拒染法检测处理后细胞存活率的变化。实验结果表明,不同类型的细胞对超声结合血卟啉的敏感性不同,声照条件相同时,三种细胞对1.6MHz频率超声的敏感性依次为:S18〉EAT〉H-22,且对超声结合血卟啉敏感性明显大于单纯超声。无论是单纯超声组还是超声结合血卟啉组,三种细胞的存活率均随超声强度的增加而下降。  相似文献   

10.
在超声背散射骨质评价中,不同测量感兴趣区域(ROI)的超声背散射信号会有波动,致使诊断准确度降低。该文目的是研究超声背散射信号随测量区域的变化规律。采用空间扫描方法离体测量了35块骨样本,将超声背散射参数从空间域变换到空间频率域。结果表明,超声背散射参数的主要空间频率成分集中于低频部分;空间频率域超声背散射参量最大值(MASF)与骨矿密度等参数具有中高度显著相关性(R2=0.45~0.83,p0.001);空间频率域超声背散射参量衰减系数(AC)也与松质骨密度及结构特征有显著相关性(R2=0.41~0.72,p0.001)。研究表明空间频率域变换方法有助于明确超声背散射信号随测量ROI的变化规律,空间频率域的超声背散射相关新参量评价松质骨状况具有可行性。  相似文献   

11.
Correlations between acoustic properties and bone density were investigated in the 12 defatted bovine cancellous bone specimens in vitro. Speed of sound (SOS) and broadband ultrasonic attenuation (BUA) were measured in three different frequency bandwidths from 0.5 to 2 MHz using three matched pairs of transducers with the center frequencies of 1, 2.25, and 3.5 MHz. The relative orientation between ultrasonic beam and bone specimen was the mediolateral (ML) direction of the bovine tibia. SOS shows significant linear positive correlation with apparent density for all three pairs of transducers. However, BUA shows relatively weak correlation with apparent density. SOS and BUA are only weakly correlated with each other. The linear combination of SOS and BUA in a multiple regression model leads to a significant improvement in predicting apparent density. The correlations among SOS, BUA, and bone density can be effectively and clearly represented in the three-dimensional space by the multiple regression model. These results suggest that the frequency range up to 1.5 MHz and the multiple regression model in the three-dimensional space can be useful in the osteoporosis diagnosis.  相似文献   

12.
Time-domain speed-of-sound (SOS) measurements in calcaneus are effective predictors of osteoporotic fracture risk. High attenuation and dispersion in bone, however, produce severe distortion of transmitted pulses that leads to ambiguity of time-domain SOS measurements. An equation to predict the effects of system parameters (center frequency and bandwidth), algorithm parameters (pulse arrival-time marker), and bone properties (attenuation coefficient and thickness) on time-domain SOS estimates is derived for media with attenuation that varies linearly with frequency. The equation is validated using data from a bone-mimicking phantom and from 30 human calcaneus samples in vitro. The data suggest that the effects of dispersion are small compared with the effects of frequency-dependent attenuation. The equation can be used to retroactively compensate data. System-related variations in SOS are shown to decrease as the pulse-arrival-time marker is moved toward the pulse center. Therefore, compared with other time-domain measures of SOS, group velocity exhibits the minimum system dependence.  相似文献   

13.
刘琴  杨迎春  陈宁华  何妍 《发光学报》2018,39(11):1565-1571
由于镉在环境中具有高毒性和生物蓄积性,对人体和环境会产生巨大的危害,因而测定其在环境中的浓度是十分必要的。本研究基于镉(Ⅱ)-蛋白质-刚果红体系的共振瑞利散射和共振非线性散射光谱建立了测定环境水样中微量镉(Ⅱ)的新方法。在pH=4的BR缓冲溶液中,镉(Ⅱ)与牛血清白蛋白溶液及刚果红溶液反应生成三元离子缔合络合物,使该体系中的共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)信号明显增强,其最大散射波长分别位于波长560 nm(RRS)、690 nm(SOS)和352 nm(FDS)处。在优化的实验条件下,ΔI与镉(Ⅱ)浓度在一定范围内呈现良好的线性关系,检出限分别为0.31 μg/L(RRS)、0.29 μg/L(SOS)、0.34 μg/L(FDS)。将该方法用于实验室废水、涪江河水和农夫山泉中镉(Ⅱ)的测定,水样中镉(Ⅱ)的回收率在93.2%~107.7%之间,相对标准偏差在0.8%~3.1%之间,取得了较理想的结果。  相似文献   

14.
Trabecular bone volume fraction (TBVF) and speed of sound (SOS) were measured for the right calcanei of 416 female volunteers. The TBVF was measured with a compact MRI developed in our laboratory. The SOS was measured with a commercial quantitative ultrasound system. It was observed that the correlation coefficient between TBVF and SOS and that between TBVF and age varied depending on the location of region of interest (ROI) in the calcaneus. As a result, an optimum circular ROI with a diameter of 20 mm was determined so that the correlation coefficients were maximized. In the optimum ROI, transverse relaxation time (T2) of the bone marrow protons of the calcaneus was found to be concentrated in a narrow range over the subjects. This result suggested that a 50% scan time reduction in the TBVF measurements could be made by skipping the T2 correction procedure.  相似文献   

15.
In recent years, quantitative ultrasound (QUS) has played an increasing role in the assessment of bone status. The axial transmission technique allows to investigate skeletal sites such as the cortical layer of long bones (radius, tibia), inadequate to through-transmission techniques. Nevertheless, the type of propagation involved along bone specimens has not been clearly elucidated. Axial transmission is investigated here by means of two-dimensional simulations at 1 MHz. We focus our interest on the apparent speed of sound (SOS) of the first arriving signal (FAS). Its dependence on the thickness of the plate is discussed and compared to previous work. Different time criteria are used to derive the apparent SOS of the FAS as a function of source-receiver distance. Frequency-wave number analysis is performed in order to understand the type of propagation involved. For thick plates (thickness>lambdabone, longitudinal wavelength in bone), and for a limited range of source-receiver distances, the FAS corresponds to the lateral wave. Its velocity equals the longitudinal bulk velocity of the bone. For plate thickness less than lambdabone, some plate modes contribute to the FAS, and the apparent SOS decreases with the thickness in a way that depends on both the time criterion and on the source-receiver distance. The FAS corresponds neither to the lateral wave nor to a single plate mode. For very thin plates (thickness< lambdabone/4), the apparent SOS tends towards the velocity of the lowest order symmetrical vibration mode (S0 Lamb mode).  相似文献   

16.
Commercial bone sonometers measure broadband ultrasonic attenuation and/or speed of sound (SOS) in order to assess bone status. Phase velocity, which is usually measured in frequency domain, is a fundamental material property of bone that is related to SOS, which is usually measured in time domain. Four previous in vitro studies indicate that phase velocity in human cancellous bone decreases with frequency (i.e., negative dispersion). In order to investigate frequency-dependent phase velocity in vivo, through-transmission measurements were performed in 73 women using a GE Lunar Achilles Insight commercial bone sonometer. Average phase velocity at 500 kHz was 1489 +/- 55 m/s (mean +/- standard deviation). Average dispersion rate was -59 +/- 52 m/sMHz. Group velocity was usually lower than phase velocity, as is expected for negatively dispersive media. Using a stratified model to represent cancellous bone, the reductions in phase velocity and dispersion rate in vivo as opposed to in vitro can be explained by (1) the presence of marrow instead of water as a fluid filler, and (2) the decreased porosity of bones of living (compared with deceased) subjects.  相似文献   

17.
Many studies have demonstrated that time-domain speed-of-sound (SOS) measurements in calcaneus are predictive of osteoporotic fracture risk. However, there is a lack of standardization for this measurement. Consequently, different investigators using different measurement systems and analysis algorithms obtain disparate quantitative values for calcaneal SOS, impairing and often precluding meaningful comparison and/or pooling of measurements. A numerical method has been developed to model the effects of frequency-dependent attenuation and dispersion on transit-time-based SOS estimates. The numerical technique is based on a previously developed linear system analytic model for Gaussian pulses propagating through linearly attenuating, weakly dispersive media. The numerical approach is somewhat more general in that it can be used to predict the effects of arbitrary pulse shapes and dispersion relationships. The numerical technique, however, utilizes several additional assumptions (compared with the analytic model) which would be required for the practical task of correcting existing clinical databases. These include a single dispersion relationship for all calcaneus samples, a simple linear model relating phase velocity to broadband ultrasonic attenuation, and a constant calcaneal thickness. Measurements on a polycarbonate plate and 30 human calcaneus samples were in good quantitative agreement with numerical predictions. In addition, the numerical approach predicts that in cancellous bone, frequency-dependent attenuation tends to be a greater contributor to variations in transit-time-based SOS estimates than dispersion. This approach may be used to adjust previously acquired individual measurements so that SOS data recorded with different devices using different algorithms may be compared in a meaningful fashion.  相似文献   

18.
The present study was undertaken in order to investigate the use of calcaneal ultrasonic backscatter for the application of diagnosis of osteoporosis. Broadband ultrasonic attenuation (BUA), speed of sound (SOS), the average backscatter coefficient (ABC), and the hip bone mineral density (BMD) were measured in calcanea in 47 women (average age: 58 years, standard deviation: 13 years). All three ultrasound variables had comparable correlations with hip BMD (around 0.5). As reported previously by others, BUA and SOS were rather highly correlated with each other. The logarithm of the ABC was only moderately correlated with the other two. The three ultrasound parameters exhibited similar moderate negative correlations with age. These results taken collectively suggest that the ABC may carry important diagnostic information independent of that contained in BUA and SOS and, therefore, may be useful as an adjunct measurement in the diagnosis of osteoporosis.  相似文献   

19.
Thirty-eight slices of pure trabecular bone 1-cm thickness were extracted from human proximal femurs. A pair of 1-MHz central frequency transducers was used to measure quantitative ultrasound (QUS) parameters in transmission [normalized broadband ultrasound attenuation (nBUA), speed of sound (SOS)] and in backscatter [broadband ultrasound backscatter (BUB)]. Bone mineral density (BMD) was measured using clinical x-ray quantitative computed tomography. Site-matched identical region of interest (ROIs) of 7 x 7 mm2 were positioned on QUS and QCT images. This procedure resulted in 605 ROIs for all the specimens data pooled together. The short-term precision of the technique expressed in terms of CV was found to be 2.3% for nBUA, 0.3% for SOS and 4.5% for BUB. Significant linear correlation between QUS and BMD were found for all the 605 ROIs pooled, with r2 values of 0.73, 0.77, and 0.58 for nBUA, SOS, and BUB, respectively (all p < 0.05). For the BUB, the best regression was obtained with a polynomial fit of second order (r2 = 0.63). An analysis of measurements errors was developed. It showed that the residual variability of SOS is almost completely predicted by measurements errors, which is not the case for BUA and BUB, suggesting a role for micro-architecture in the determination of BUA and BUB.  相似文献   

20.
The increasing use of densitometric devices for assessing bone fragility has progressively strengthened the assumption that mass is the most important property determining bone mechanical competence. Nevertheless, structure and microarchitecture are relevant aspects of bone strength. The study of microarchitecture is based on the measure of width, number, and separation of trabeculae as well as on their spatial organization. There are several methods to assess bone architecture, particularly at the trabecular level. In particular, histomorphometry, based on the use of optical microscopy and on the principles of quantitative histology and stereology, evaluates microarchitecture two-dimensionally, even if these measures appear well correlated to the three-dimensional structure and properties of bone. In addition, new computerized methods allow the acquisition of more sophisticated measurements by means of a digitizer have been introduced to integrate the use of the microscope. These methods supply information on trabecular width as well as on its distribution and on the organization of the trabeculae in the marrow space.

Microarchitecture seems to be a determinant of bone fragility independent of bone density and it is important for understanding the mechanisms of bone fragility as well as the action of the drugs used to prevent osteoporotic fractures. Several in vivo studies (on animals and humans) can provide an additional interpretation for the anti-fracture effect of such drugs. For instance, bisphosphonates and parathyroid hormone seem to preserve or even improve microarchitecture. The challenge for the future will be to evaluate bone quality in vivo with the same or better resolution and accuracy than the invasive methods used today.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号