首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
黄凯  他得安  王威琪 《应用声学》2009,28(4):308-313
骨质疏松症是一种骨强度下降的全身性骨骼疾病,骨强度的下降是骨量减少和骨微结构退化的共同结果。相比于传统的超声透射方法,超声背散射法可提供更多的骨微结构信息,而对于松质骨结构的建模能有助于结构信息的获取。本文将骨小梁简化为单圆柱模型(圆柱状的单根骨小梁浸于骨髓中),并基于此模型对超声背散射与频率的关系进行分析。用铝线代替骨小梁做仿体实验,通过实验与理论结果的比较来验证单圆柱模型的可行性。  相似文献   

2.
刘庆凯  万柏坤  朱欣  边伟 《应用声学》2001,20(2):27-30,6
骨质疏松症是危害老龄化社会的常见疾病。本研究使用特殊结构设计的超声波探头,利用定量超声(QUS)技术测量胫骨中皮质骨的超声速度(SOS),根据其所反映的骨密度信息,将可从一种新的角度评估人体的骨质量,为诊断骨质疏松症的临床应用提供一种新的诊断途径。  相似文献   

3.
骨质的定期检测对骨质疏松的防治至关重要。本文研究了骨质疏松对超声导波在人体长骨中传播的影响。提出采用多尺度小波变换方法对接收到的导波信号进行处理,通过分析在不同传播距离下高阶小波细节分量所占信号总能量的变化,来判断是否患有骨质疏松症。在13位志愿者的小腿胫骨上进行超声测量,得到导波信号。经多尺度小波变换方法的分析处理结果显示在13位志愿者中,有7位志愿者的超声导波信号随着传播距离的改变,其主要频率成分发生了明显的变化,显示这7位志愿者患有骨质疏松症。这一诊断结果与X射线技术诊断结果相比,准确率可以达到92.3%,表明本文所提出的利用小波多尺度变换方法对长骨进行超声诊断具有较好的潜力。   相似文献   

4.
蔡晨亮  屠娟  郭霞生  章东 《声学学报》2019,44(4):772-779
关于多气泡相互作用的理论研究对于深入理解超声造影剂在医疗领域中的应用机理具有重要意义。本工作建立了一个2维轴对称有限元模型来研究流体环境中超声造影剂双气泡相互作用,讨论了驱动超声频率和气泡尺寸对气泡之间吸引和排斥趋势的影响,得到了气泡半径与气泡之间距离随时间变化的曲线,以及气泡周围流体速度场的细节,并且研究了气泡包膜参数(即表面张力系数和粘度系数)对气泡相互作用的影响.结果表明,相互作用中的气泡对整体的相对运动趋势由驱动频率和共振频率之间的关系决定;在超声参数固定时,气泡包膜的粘弹特性可用来调控气泡间相互作用强度。结果对实验中观察到的气泡聚集现象进行了合理解释,并为超声造影剂在医疗实践中的应用提供了基础理论支撑.   相似文献   

5.
SiGe HBT大信号等效电路模型   总被引:3,自引:0,他引:3       下载免费PDF全文
基于SiGe HBT(异质结双极晶体管)的物理模型,建立了描述SiGe HBT的大信号等效电路模型.该等效电路模型考虑了准饱和效应和自热效应等,模型分为本征和非本征两部分,物理意义清晰,拓扑结构相对简单.该模型嵌入了PSPICE软件的DEVEO(器件方程开发包)中.在PSPICE软件资源的支持下,利用该模型对SiGe HBT器件进行了交直流特性模拟分析,模拟结果与理论分析结果相一致,并且与文献报道的结果符合较好. 关键词: SiGe HBT 等效电路模型 PSPICE  相似文献   

6.
樊康旗  贾建援  朱应敏  刘小院 《物理学报》2007,56(11):6345-6351
基于Hamaker假设、Lennard-Jones势能定律及经典弹性理论建立了一种新型的球体与平面黏着接触的弹性模型,该模型显示黏着力在原子力显微镜(AFM)针尖趋近和撤离样品表面,即加载和卸载的两个过程中存在黏着滞后现象,表明了AFM在轻敲工作模式中存在能量耗散.同时,根据所建的黏着接触弹性模型,建立了AFM在轻敲工作模式下的动力学模型,研究了AFM在轻敲工作模式下的振动幅度、相位差及耗散功率随针尖与样品表面间距的变化规律,仿真结果与现有的实验结果相一致.  相似文献   

7.
针对光电多目标切换跟踪中的预测跟踪问题,提出了一种基于灰色理论的目标位置预测方法。以传统的灰色模型为基础,充分考虑光电跟踪的特点,分别从原始数据预处理、背景值和时间响应函数三个方面对GM(1,1)模型和GM(1,1)幂模型进行优化,并修正了GM(1,1)幂模型中幂指数的确定方法,最终建立新陈代谢模型,将两者均运用到对光电跟踪目标的位置预测过程中,实验结果表明,优化后的模型预测精度更高,可应用于光电预测跟踪。  相似文献   

8.
严凡  林莉  金士杰 《应用声学》2023,42(3):523-528
针对单测量向量模型(Single Measurement Vector,SMV)等传统压缩感知方法处理超声全矩阵数据时,存在重构精度低和重构耗时长等问题,本文研究了多测量向量模型(Multiple Measurement Vectors,MMV)应用的可行性。针对铝合金试块中不同深度的φ2 mm横通孔,分别使用MMV模型中的多测量稀疏贝叶斯(Multiple Sparse Bayesian Learning,MSBL)算法和SMV模型中的稀疏贝叶斯(Sparse Bayesian Learning,SBL)算法进行超声全矩阵数据重构,并实施全聚焦成像。随后,引入归一化均方误差和阵列性能因子评价图像和信号的重构效果。实验结果表明,SBL算法在25%采样率时的归一化均方误差为1.9%,而MSBL算法仅需15%采样率即可达到相似效果且耗时更少。  相似文献   

9.
空气耦合电容式微超声换能器设计   总被引:2,自引:0,他引:2       下载免费PDF全文
张慧  李志  郑冠儒  曾周末 《声学学报》2019,44(1):116-124
建立了空气耦合电容式微超声换能器(CMUT)的理论方法,分析CMUT各个结构参数对其性能参数的影响。根据理论分析结果结合无损检测应用背景设计了一个由16个阵元构成的CMUT阵列,并采用SOI晶圆键合工艺制作。该阵列每个阵元包含16个圆形CMUT敏感单元,敏感单元的半径400μm,中心频率230 kHz。建立CMUT发射和接收瞬态仿真模型分别得到CMUT发射声压和接收灵敏度与激励电压的关系,并通过实验测试验证该仿真模型的准确性。最后通过实验对CMUT与商用压电空耦超声换能器的性能进行对比,实验结果表明CMUT的发射声压和接收灵敏度与商用换能器达到相同数量级,并且能够成功激发和接收铝合金板中A_0模态Lamb波。  相似文献   

10.
在SD对壳模型理论框架下, 讨论了相互作用玻色子模型下U(5), SO(6)以及SU(3)的经典极限谱. 结果发现SD对壳模型可以很好地再现相互作用玻色子模型中的三种极限谱.  相似文献   

11.
Osteoporosis is a progressive bone disease,which is characterized by a decrease in the bone mass and deterioration in bone micro-architecture.In theory,photoacoustic(PA) analysis has the potential to obtain the characteristics of the bone effectively.In this study,we try to compare the PA spectral analysis(PASA) method with the quantitative ultrasound(QUS) method in osteoporosis assessment.We compare the quantified parameter slope from the PASA and broadband ultrasound attenuation from QUS among different bone models,respectively.Both the simulation and ex vivo experiment results show that bone with lower bone mineral density has the higher slope in the PASA method.Our comparison study proves that the PASA method has the same efficiency as QUS in osteoporosis assessment.  相似文献   

12.
The diagnosis of osteoporosis is eventually converted to the measurement of bone mineral density(BMD) in clinical trials.Since our previous work had proved the ability of using photoacoustic spectral analysis(PASA)to efficiently detect osteoporosis,in this contribution,we proposed a fully connected multi-layer deep neural network combined with PASA to semi-quantify BMD values corresponding to varying degrees of bone loss and to further evaluate the degree of osteoporosis.Experiments were carried out on swine femur heads,and the performance of our proposed method is satisfying for future clinical screening.  相似文献   

13.
Fabric dependence of quasi-waves in anisotropic porous media   总被引:1,自引:0,他引:1  
Assessment of bone loss and osteoporosis by ultrasound systems is based on the speed of sound and broadband ultrasound attenuation of a single wave. However, the existence of a second wave in cancellous bone has been reported and its existence is an unequivocal signature of poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as bone mineral density (BMD), a fabric-dependent anisotropic poroelastic wave propagation theory was recently developed for pure wave modes propagating along a plane of symmetry in an anisotropic medium. Key to this development was the inclusion of the fabric tensor--a quantitative stereological measure of the degree of structural anisotropy of bone--into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of mixed wave modes along an arbitrary direction in anisotropic porous media called quasi-waves. It was found that differences between phase and group velocities are due to the anisotropy of the bone microarchitecture, and that the experimental wave velocities are more accurately predicted by the poroelastic model when the fabric tensor variable is taken into account. This poroelastic wave propagation theory represents an alternative for bone quality assessment beyond BMD.  相似文献   

14.
In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.  相似文献   

15.
Xiaojun Song 《中国物理 B》2022,31(7):74301-074301
Ultrasonic guided waves (UGWs), which propagate throughout the entire thickness of cortical bone, are attractive for the early diagnosis of osteoporosis. However, this is challenging due to the impact of soft tissue and the inherent difficulties related to multiparametric inversion of cortical bone quality factors, such as cortical thickness and bulk wave velocity. Therefore, in this research, a UGW-based multi-parameter inversion algorithm is developed to predict strength-related factors. In simulation, a free plate (cortical bone) and a bilayer plate (soft tissue and cortical bone) are used to validate the proposed method. The inversed cortical thickness (CTh), longitudinal velocity (VL) and transverse velocity (VT) are in accordance with the true values. Then four bovine cortical bone plates were used in in vitro experiments. Compared with the reference values, the relative errors for cortical thickness were 3.96%, 0.83%, 2.87%, and 4.25%, respectively. In the in vivo measurements, UGWs are collected from the tibias of 10 volunteers. The theoretical dispersion curves depicted by the estimated parameters (VT, VL, CTh) match well with the extracted experimental ones. In comparison with dual-energy x-ray absorptiometry, our results show that the estimated transverse velocity and cortical thickness are highly sensitive to osteoporosis. Therefore, these two parameters (CTh and VT) of long bones have potential to be used for diagnosis of bone status in clinical applications.  相似文献   

16.
Correlations between acoustic properties and bone density were investigated in the 12 defatted bovine cancellous bone specimens in vitro. Speed of sound (SOS) and broadband ultrasonic attenuation (BUA) were measured in three different frequency bandwidths from 0.5 to 2 MHz using three matched pairs of transducers with the center frequencies of 1, 2.25, and 3.5 MHz. The relative orientation between ultrasonic beam and bone specimen was the mediolateral (ML) direction of the bovine tibia. SOS shows significant linear positive correlation with apparent density for all three pairs of transducers. However, BUA shows relatively weak correlation with apparent density. SOS and BUA are only weakly correlated with each other. The linear combination of SOS and BUA in a multiple regression model leads to a significant improvement in predicting apparent density. The correlations among SOS, BUA, and bone density can be effectively and clearly represented in the three-dimensional space by the multiple regression model. These results suggest that the frequency range up to 1.5 MHz and the multiple regression model in the three-dimensional space can be useful in the osteoporosis diagnosis.  相似文献   

17.
The accumulation of microdamage in trabecular bone tissue is suspected of being a predictive indicator of osteoporosis diagnosis. To quantify this microdamage, the Dynamic AcoustoElastic Testing (DAET) method measures the Time Of Flight (TOF) and amplitude variations of transmitted ultrasound (US) pulses, while the bone sample is submitted to a low frequency sinusoidal hydrostatic pressure (opening/closing of microcracks). However, DAET is both sensitive to viscoelastic properties changes and microcracks density. To verify the microcracks density contribution on DAET results, a numerical approach is proposed. Multliple configurations of microdamaged trabecular bone-tissue-like mesh have been simulated. A 2D pseudo-spectral time domain numerical model was then developed to simulate linear wave propagation in heterogeneous solids. The influence of the microcracks number and orientation on the US TOF was particularly investigated. Results are discussed and compared with experimental data obtained from DAET measurements in trabecular bone samples.  相似文献   

18.
Boyi Li 《中国物理 B》2022,31(11):114303-114303
The ultrasonic backscatter (UB) has the advantage of non-invasively obtaining bone density and structure, expected to be an assessment tool for early diagnosis osteoporosis. All former UB measurements were based on exciting a short single-pulse and analyzing the ultrasonic signals backscattered in bone. This study aims to examine amplitude modulation (AM) ultrasonic excitation with UB measurements for predicting bone characteristics. The AM multiple lengths excitation and backscatter measurement (AM-UB) functions were integrated into a portable ultrasonic instrument for bone characterization. The apparent integrated backscatter coefficient in the AM excitation (AIBAM) was evaluated on the AM-UB instrumentation. The correlation coefficients of the AIBAM estimating volume fraction (BV/TV), structure model index (SMI), and bone mineral density (BMD) were then analyzed. Significant correlations (|R| = 0.82-0.93, p < 0.05) were observed between the AIBAM, BV/TV, SMI, and BMD. By growing the AM excitation length, the AIBAM values exhibit more stability both in 1.0-MHz and 3.5-MHz measurements. The recommendations in AM-UB measurement were that the avoided length (T1) should be lower than AM excitation length, and the analysis length (T2) should be enough long but not more than AM excitation length. The authors conducted an AM-UB measurement for cancellous bone characterization. Increasing the AM excitation length could substantially enhance AIBAM values stability with varying analyzed signals. The study suggests the portable AM-UB instrument with the integration of real-time analytics software that might provide a potential tool for osteoporosis early screening.  相似文献   

19.
The two-wave phenomenon, the wave separation of a single ultrasonic pulse in cancellous bone, is expected to be a useful tool for the diagnosis of osteoporosis. However, because actual bone has a complicated structure, precise studies on the effect of transition conditions between cortical and cancellous parts are required. This study investigated how the transition condition influenced the two-wave generation using three-dimensional X-ray CT images of an equine radius and a three-dimensional simulation technique. As a result, any changes in the boundary between cortical part and trabecular part, which gives the actual complex structure of bone, did not eliminate the generation of either the primary wave or the secondary wave at least in the condition of clear trabecular alignment. The results led us to the possibility of using the two-wave phenomenon in a diagnostic system for osteoporosis in cases of a complex boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号