首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p-type microcrystalline silicon (μc-Si:H) on n-type crystalline silicon (c-Si) heterojunction solar cells is fabricated by radio-frequency plasma enhanced chemical vapour deposition (rf-PECVD). The effect of the μc- Si:Hp-layers on the performance of the heterojunction solar cells is investigated. Optimum μc-Si:H p-layer is obtained with hydrogen dil u tion ratio of 99.65 %, rf-power of 0. 08 W/cm^2 , gas phase doping ratio of 0. 125 %, and the p-layer thickness of 15nm. We fabricate μc-Si:H(p)/c-Si(n) heterojunction solar cells without texturing and obtained an efficiency of 13.4%. The comparisons of the solar-cell performances using different surface passivation techniques are discussed.  相似文献   

2.
The key feature of amorphous/crystalline silicon heterojunction solar cells is extremely low surface recombination,which is related to superior passivation on the crystalline silicon wafer surface using thin hydrogenated amorphous silicon(a-Si:H)layers,leading to a high open-circuit voltage.In this work,a two-step method of a-Si:H passivation is introduced,showing excellent interface passivation quality,and the highest effective minority carrier lifetime exceeds 4500 μs.By applying a buffer layer deposited through pure silane plasma,the risk of film epitaxial growth and plasma damage caused by hydrogen diluted silane plasma is effectively reduced.Based on this,excellent passivation is realized through the following hydrogen diluted silane plasma process with the application of high density hydrogen.In this process,hydrogen diffuses to a-Si/c-Si interface,saturating residual dangling bonds which are not passivated by the buffer layer.Employing this two-step method,a heterojunction solar cell with an area of 239 cm~2 is prepared,yielding to open-circuit voltage up to 735 mV and total-area efficiency up to 22.4%.  相似文献   

3.
高明  杜汇伟  杨洁  赵磊  徐静  马忠权 《中国物理 B》2017,26(4):45201-045201
The damage on the atomic bonding and electronic state in a SiO_x(1.4-2.3 nm)/c-Si(150 μm) interface has been investigated.This occurred in the process of depositing indium tin oxide(ITO) film onto the silicon substrate by magnetron sputtering.We observe that this damage is caused by energetic particles produced in the plasma(atoms,ions,and UV light).The passivation quality and the variation on interface states of the SiO_x/c-Si system were mainly studied by using effective minority carrier lifetime(τ_(eff)) measurement as a potential evaluation.The results showed that the samples' τ_(eff)was reduced by more than 90%after ITO formation,declined from 107 μs to 5 μs.Following vacuum annealing at 200 ℃,the τ_(eff) can be restored to 30 μs.The components of Si to O bonding states at the SiO_x/c-Si interface were analyzed by x-ray photoelectron spectroscopy(XPS) coupled with depth profiling.The amorphous phase of the SiO_x layer and the "atomistic interleaving structure" at the SiO_x/c-Si interface was observed by a transmission electron microscope(TEM).The chemical configuration of the Si-O fraction within the intermediate region is the main reason for inducing the variation of Si dangling bonds(or interface states) and effective minority carrier lifetime.After an appropriate annealing,the reduction of the Si dangling bonds between SiO_x and near the c-Si surface is helpful to improve the passivation effect.  相似文献   

4.
An improved method of fitting point-by-point is proposed to determine the absorption coefficient from infrared(IR)transmittance. With no necessity of empirical correction factors, the absorption coefficient can be accurately determined for the films with thin thicknesses. Based on this method, the structural properties of the hydrogenated amorphous silicon oxide materials(a-SiOx:H) are investigated. The oxygen-concentration-dependent variation of the Si–O–Si and the Si–H related modes in a-SiOx:H materials is discussed in detail.  相似文献   

5.
Al2O3 films with a thickness of about lOOnm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below lOOcm/s is obtained on 10Ωcm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 10^12 cm^-2 is detected in the Al2O3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO2 and plasma enhanced chemical vapor deposition SiNx :H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-S/by Al2O3.  相似文献   

6.
The high pressure radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process was adopted to prepare the n-i-p microcrystalline silicon solar cells,the influence of p-type layers on the performance of the solar cells was investigated,and the optimum p layer suited to the n-i-p microcrystalline silicon solar cells was obtained.The experimental results demonstrate that the performance of the solar cells can be highly affected by the structural and optical properties of the p-layers,and the performance of solar cells can be greatly improved by optimizing p layers.We have achieved an initial active-area efficiency of 8.17% (V oc =0.49 V,J sc =24.9 mA/cm 2 ,FF=67%) for the μc-Si:H single-junction n-i-p solar cells and an initial active-area efficiency of 10.93% (V oc =1.31 V,J sc =13.09 mA/cm 2 ,FF=64%) for the a-Si:H/μc-Si:H tandem n-i-p solar cells.  相似文献   

7.
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15nm)/a-Si:H(10nm)/ epitaxial c-Si(47μm)/epitaxial c-Si(3μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer S d (Sd =PH3 /(PH3 +SiH4 +H2 )) on the performance of the solar cell is studied by means of current density-voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with S d increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at S d = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35mA/cm2 , a fill factor of 63.3%, and a conversion efficiency of 7.9%.  相似文献   

8.
Using diborane as doping gas, p-doped μc-Si:H layers are deposited by using the plasma enhanced chemical vapour deposition (PECVD) technology. The effects of deposition pressure and plasma power on the growth and the properties of μc-Si:H layers are investigated. The results show that the deposition rate, the electrical and the structural properties are all strongly dependent on deposition pressure and plasma power. Boron-doped μc-Si:H films with a dark conductivity as high as 1.42 Ω^-1·cm^-1 and a crystallinity of above 50% are obtained. With this p-layer, μc-Si:H solar cells are fabricated. In addition, the mechanism for the effects of deposition pressure and plasma power on the growth and the properties of boron-doped μc-Si:H layers is discussed.  相似文献   

9.
The indium–tin oxide(ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction(HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current(DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate,pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4×10-4?·m and average transmittance of 89% in the wavelength range of 380–780 nm were obtained under the optimized conditions:oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage(V oc) of 0.626 V, a filling factor(FF) of 0.50, and a short circuit current density(J sc) of 36.4 m A/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The V oc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the(p) a-Si:H and(n) c-Si layer. The higher V oc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H.  相似文献   

10.
《中国物理 B》2021,30(9):97101-097101
It is well known that in the process of thermal oxidation of silicon,there are P_b-type defects at amorphous silicon dioxide/silicon(a-SiO_2/Si) interface due to strain.These defects have a very important impact on the performance and reliability of semiconductor devices.In the process of passivation,hydrogen is usually used to inactivate P_b-type defects by the reaction P_b+H_2→P_bH+H.At the same time,P_bH centers dissociate according to the chemical reaction P_bH→P_b+H.Therefore,it is of great significance to study the balance of the passivation and dissociation.In this work,the reaction mechanisms of passivation and dissociation of the P_b-type defects are investigated by first-principles calculations.The reaction rates of the passivation and dissociation are calculated by the climbing image-nudged elastic band(CI-NEB)method and harmonic transition state theory(HTST).By coupling the rate equations of the passivation and dissociation reactions,the equilibrium density ratio of the saturated interfacial dangling bonds and interfacial defects(P_b,P_(b0),and P_(b1))at different temperatures is calculated.  相似文献   

11.
贾晓洁  周春兰  朱俊杰  周肃  王文静 《中国物理 B》2016,25(12):127301-127301
It is studied in this paper that the electrical characteristics of the interface between Si O_y N_x/Si N_x stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the Si O_y N_x layer on interface parameters, such as interface state density Ditand fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance–voltage measurements reveal that inserting a thin Si O_y N_x layer between the Si N_x and the silicon wafer can suppress Qfin the film and Ditat the interface. The positive Qfand Ditand a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the Si O_y N_x film increasing. Prepared by deposition at a low temperature and a low ratio of N_2O/Si H_4 flow rate, the Si O_y N_x/Si N_x stacks result in a low effective surface recombination velocity(Seff) of 6 cm/s on a p-type 1 ?·cm~(–5) ?·cm FZ silicon wafer.The positive relationship between Seffand Ditsuggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it.  相似文献   

12.
Atomic-layer-deposited(ALD) aluminum oxide(Al_2O_3) has demonstrated an excellent surface passivation for crystalline silicon(c-Si) surfaces, as well as for highly boron-doped c-Si surfaces. In this paper, water-based thermal atomic layer deposition of Al_2O_3 films are fabricated for c-Si surface passivation. The influence of deposition conditions on the passivation quality is investigated. The results show that the excellent passivation on n-type c-Si can be achieved at a low thermal budget of 250℃ given a gas pressure of 0.15 Torr. The thickness-dependence of surface passivation indicates that the effective minority carrier lifetime increases drastically when the thickness of Al_2O_3 is larger than 10 nm. The influence of thermal post annealing treatments is also studied. Comparable carrier lifetime is achieved when Al_2O_3 sample is annealed for 15 min in forming gas in a temperature range from 400℃ to 450℃. In addition, the passivation quality can be further improved when a thin PECVD-SiN_x cap layer is prepared on Al_2O_3, and an effective minority carrier lifetime of2.8 ms and implied Voc of 721 mV are obtained. In addition, several novel methods are proposed to restrain blistering.  相似文献   

13.
The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper. Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6\%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.  相似文献   

14.
A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and --0.03eV, respectively.  相似文献   

15.
This paper reports that a double N layer (a-Si:H/μc-Si:H) is used to substitute the single microcrystalline silicon n layer (n-μc-Si:H) in n/p tunnel recombination junction between subcells in a-Si:H/μc-Si:H tandem solar cells. The electrical transport and optical properties of these tunnel recombination junctions are investigated by current-voltage measurement and transmission measurement. The new n/p tunnel recombination junction shows a better ohmic contact. In addition, the n/p interface is exposed to the air to examine the effect of oxidation on the tunnel recombination junction performance. The open circuit voltage and FF of a-Si:H/μc-Si:H tandem solar cell are all improved and the current leakage of the subcells can be effectively prevented efficiently when the new n/p junction is implemented as tunnel recombination junction.  相似文献   

16.
Si C monocrystal substrates are implanted by Pd ions with different ion-beam energies and fluences,and the effects of Pd ion implantation on wettability of Si/Si C and Al–12 Si/Si C systems are investigated by the sessile drop technique.The decreases of contact angles of the two systems are disclosed after the ion implantation,which can be attributed to the increase of surface energy(σ_(SV)) of Si C substrate derived from high concentration of defects induced by the ionimplantation and to the decrease of solid–liquid surface energy(σ_(SL)) resulting from the increasing interfacial interactions.This study can provide guidance in improving the wettability of metals on Si C and the electronic packaging process of Si C substrate.  相似文献   

17.
易施光  张万辉  艾斌  宋经纬  沈辉 《中国物理 B》2014,23(2):28801-028801
In this paper,based on the equivalent single diode circuit model of the solar cell,an equivalent circuit diagram for two serial solar cells is drawn.Its equations of current and voltage are derived from Kirchhoff’s current and voltage law.First,parameters are obtained from the I–V(current–voltage)curves for typical monocrystalline silicon solar cells(125 mm×125 mm).Then,by regarding photo-generated current,shunt resistance,serial resistance of the first solar cell,and resistance load as the variables.The properties of shunt currents(Ish1and Ish2),diode currents(ID1and ID2),and load current(IL)for the whole two serial solar cells are numerically analyzed in these four cases for the first time,and the corresponding physical explanations are made.We find that these parameters have different influences on the internal currents of solar cells.Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module.  相似文献   

18.
周耐根  刘博  张弛  李克  周浪 《中国物理 B》2016,25(7):78109-078109
Based on the Tersoff potential, molecular dynamics simulations have been performed to investigate the kinetic coefficients and growth velocities of Si(100),(110),(111), and(112) planes. The sequences of the kinetic coefficients and growth velocities are μ_((100)) μ_((110)) μ_((112)) μ_((111))and v_((100)) v_((110)) v_((112)) v_((111)), respectively, which are not consistent with the sequences of the interface energies, interplanar spacings, and melting points of the four planes. However,they agree well with the sequences of the distributions and diffusion coefficients of the melting atoms near the solid–liquid interfaces. It indicates that the atomic distributions and diffusion coefficients affected by the crystal orientations determine the anisotropic growth of silicon. The formation of stacking fault structure will further decrease the growth velocity of the Si(111) plane.  相似文献   

19.
An amorphous SiO_2/4 H–Si C(0001) interface model with carbon dimer defects is established based on density functional theory of the first-principle plane wave pseudopotential method.The structures of carbon dimer defects after passivation by H_2 and NO molecules are established,and the interface states before and after passivation are calculated by the Heyd–Scuseria–Ernzerhof(HSE06) hybrid functional scheme.Calculation results indicate that H_2 can be adsorbed on the O_2–C = C–O_2 defect and the carbon–carbon double bond is converted into a single bond.However,H_2 cannot be adsorbed on the O_2–(C = C) –O_2 defect.The NO molecules can be bonded by N and C atoms to transform the carbon–carbon double bonds,thereby passivating the two defects.This study shows that the mechanism for the passivation of Si O_2/4 H–SiC(0001) interface carbon dimer defects is to convert the carbon–carbon double bonds into carbon dimers.Moreover,some intermediate structures that can be introduced into the interface state in the band gap should be avoided.  相似文献   

20.
侯国付  耿新华  张晓丹  孙建  张建军  赵颖 《中国物理 B》2011,20(7):77802-077802
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号