首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
Yi-Xuan Shan 《中国物理 B》2022,31(8):80507-080507
Astrocytes have a regulatory function on the central nervous system (CNS), especially in the temperature-sensitive hippocampal region. In order to explore the thermosensitive dynamic mechanism of astrocytes in the CNS, we establish a neuron-astrocyte minimum system to analyze the synchronization change characteristics based on the Hodgkin-Huxley model, in which a pyramidal cell and an interneuron are connected by an astrocyte. The temperature range is set as 0 ℃-40 ℃ to juggle between theoretical calculation and the reality of a brain environment. It is shown that the synchronization of thermosensitive neurons exhibits nonlinear behavior with changes in astrocyte parameters. At a temperature range of 0 ℃-18 ℃, the effects of the astrocyte can provide a tremendous influence on neurons in synchronization. We find the existence of a value for inositol triphosphate (IP3) production rate and feedback intensities of astrocytes to neurons, which can ensure the weak synchronization of two neurons. In addition, it is revealed that the regulation of astrocytes to pyramidal cells is more sensitive than that to interneurons. Finally, it is shown that the synchronization and phase transition of neurons depend on the change in Ca2+ concentration at the temperature of weak synchronization. The results in this paper provide some enlightenment on the mechanism of cognitive dysfunction and neurological disorders with astrocytes.  相似文献   

2.
Excitable media,such as cells,can be polarized and magnetized in the presence of an external electromagnetic field.In fact,distinct geometric deformation can be induced by the external electromagnetic field,and also the capacitance of the membrane of cell can be changed to pump the field energy.Furthermore,the distribution of ion concentration inside and outside the cell can also be greatly adjusted.Based on the theory of bio-electromagnetism,the distribution of field energy and intracellular and extracellular ion concentrations in a single shell cell can be estimated in the case with or without external electric field.Also,the dependence of shape of cell on the applied electronic field is calculated.From the viewpoint of physics,the involvement of external electric field will change the gradient distribution of field energy blocked by the membrane.And the intracellular and extracellular ion concentration show a certain difference in generating timevarying membrane potential in the presence of electric field.When a constant electric field is applied to the cell,distinct geometric deformation is induced,and the cell triggers a transition from prolate to spherical and then to oblate ellipsoid shape.It is found that the critical frequency in the applied electric field for triggering the distinct transition from prolate to oblate ellipsoid shape obtains smaller value when larger dielectric constant of the cell membrane and intracellular medium,and smaller conductivity for the intracellular medium are used.Furthermore,the effect of cell deformation is estimated by analyzing the capacitance per unit area,the density of field energy,and the change of ion concentration on one side of cell membrane.The intensity of external applied electric field is further increased to detect the change of ion concentration.And the biophysical effect in the cell is discussed.So the deformation effect of cells in electric field should be considered when regulating and preventing harm to normal neural activities occurs in a nervous system.  相似文献   

3.
Interleukin-3 prevents neuronal death induced by amyloid peptide   总被引:1,自引:0,他引:1  

Background  

Interleukin-3 (IL-3) is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known.  相似文献   

4.
Glutamate plays a double role in 13C-nuclear magnetic resonance (NMR) spectroscopic determination of glucose metabolism in the brain. Bidirectional exchange between initially unlabeled glutamate and labeled α-ketoglutarate, formed from pyruvate via pyruvate dehydrogenase (PDH), indicates the rate of energy metabolism in the tricarboxylic acid (VTCA) cycle in neurons (VPDH, n) and, with additional computation, also in astrocytes (VPDH, g), as confirmed using the astrocyte-specific substrate [13C]acetate. Formation of new molecules of glutamate during increased glutamatergic activity occurs only in astrocytes by combined pyruvate carboxylase (VPC) and astrocytic PDH activity. VPDH, g accounts for ∼15% of total pyruvate metabolism in the brain cortex, and VPC accounts for another ∼10%. Since both PDH-generated and PC-generated pyruvates are needed for glutamate synthesis, ∼20/25 (80%) of astrocytic pyruvate metabolism proceed via glutamate formation. Net transmitter glutamate [γ-aminobutyric acid (GABA)] formation requires transfer of newly synthesized α-ketoglutarate to the astrocytic cytosol, α-ketoglutarate transamination to glutamate, amidation to glutamine, glutamine transfer to neurons, its hydrolysis to glutamate and glutamate release (or GABA formation). Glutamate-glutamine cycling, measured as glutamine synthesis rate (Vcycle), also transfers previously released glutamate/GABA to neurons after an initial astrocytic accumulation and measures predominantly glutamate signaling. An empirically established ∼1/1 ratio between glucose metabolism and Vcycle may reflect glucose utilization associated with oxidation/reduction processes during glutamate production, which together with associated transamination processes are balanced by subsequent glutamate oxidation after cessation of increased signaling activity. Astrocytic glutamate formation and subsequent oxidative metabolism provide large amounts of adenosine triphosphate used for accumulation from extracellular clefts of neuronally released K+ and glutamate and for cytosolic Ca2+ homeostasis.  相似文献   

5.
The energy dependence of crystalline structures in Au thin-film deposition processes was investigated with the use of a low-energy mass-selected ion beam system. Au films deposited on Si(100) untreated wafer surfaces by the beam system at different ion energies in the range of 20–200?eV were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD) and in-situ reflection high-energy electron diffraction (RHEED). The XRD results show that the kinetic energy provided by ion bombardment can facilitate crystal growth with specific orientations such as (100) or (110), the surfaces of which have relatively high surface energies. Our observations also suggest that each crystalline orientation appears only in a specific energy range of ion bombardment. These results indicate that Au crystalline orientations may be controlled by the ion irradiation energy during deposition processes.  相似文献   

6.
《Radiation measurements》2001,34(1-6):337-339
The paper presents an additional acceleration system, used to shift up an ion energy spectrum by 20 keV, and some examples of the ion parabolas registered by means of a Thomson-type spectrometer within the rod plasma injector (RPI-60) facility, designed for plasma physics and application studies. The use of the described acceleration system and CR-39 track detectors has enabled the registration of ions of energy above 20 keV to be performed. It made possible to measure the ion (e.g. deuteron) energy spectrum more exactly in the low-energy range, what is important for the determination of ion emission characteristics.  相似文献   

7.
A state-of-the-art high energy heavy ion microbeam irradiation system is constructed at the Institute of Modern Physics of the Chinese Academy of Sciences. This microbeam system operates in both full current intensity mode and single ion mode. It delivers a predefined number of ions to pre-selected targets for research in biology and material science. The characteristic of this microbeam system is high energy and vertical irradiation. A quadrupole focusing system, in combination with a series of slits, has been designed to optimize the spatial resolution. A symmetrically achromatic system leads the beam downwards and serves simulta-neously as an energy analyzer. A high gradient quadrupole triplet finally focuses a C6+ ion beam to 1 μm in the vacuum chamber within the energy range from 10 MeV/u to 100 MeV/u. In this paper, the IMP microbeam system is described in detail. A systematic investigation of the ion beam optics of this microbeam system is presented together with the associated aberrations. Comparison is made between the IMP microbeam system and the other existing systems to further discuss the performance of this microbeam. Then the optimized initial beam parameters are given for high resolution and high hitting efficiency. At last, the experiment platform is briefly introduced.  相似文献   

8.
A state-of-the-art high energy heavy ion microbeam irradiation system is constructed at the Institute of Modern Physics of the Chinese Academy of Sciences. This microbeam system operates in both full current intensity mode and single ion mode. It delivers a predefined number of ions to pre-selected targets for research in biology and material science. The characteristic of this microbeam system is high energy and vertical irradiation. A quadrupole focusing system, in combination with a series of slits, has been designed to optimize the spatial resolution. A symmetrically achromatic system leads the beam downwards and serves simultaneously as an energy analyzer. A high gradient quadrupole triplet finally focuses a C^6+ ion beam to 1 μm in the vacuum chamber within the energy range from 10 MeV/u to 100 MeV/u. In this paper, the IMP microbeam system is described in detail. A systematic investigation of the ion beam optics of this microbeam system is presented together with the associated aberrations. Comparison is made between the IMP microbeam system and the other existing systems to further discuss the performance of this microbeam. Then the optimized initial beam parameters are given for high resolution and high hitting efficiency. At last, the experiment platform is briefly introduced.  相似文献   

9.
Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.  相似文献   

10.
利用质谱仪对不同进气速率下的氩气、氮气及氮-氘混合三种射频感应耦合等离子体的离子能量分布、离子浓度演化进行了研究。实验结果表明,等离子体的离子能量分布呈多峰结构;在功率一定时,纯氩气及氮气离子的峰值能量随进气速率增加向低能端移动,且离子通量密度逐渐降低;而氮-氘混合等离子体生成的氨系离子 ND4+,峰值离子能量随氘气进气速率先降低后上升,通量密度先增大后降低。   相似文献   

11.
The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation.For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:∼0.5 J, power density: 1010 W/cm2) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES.  相似文献   

12.

Background  

Annexin A7 is a member of the annexin protein family, which is characterized by its ability to interact with phospholipids in the presence of Ca2+-ions and which is thought to function in Ca2+-homeostasis. Results from mutant mice showed altered Ca2+-wave propagation in astrocytes. As the appearance and distribution of Annexin A7 during brain development has not been investigated so far, we focused on the distribution of Annexin A7 protein during mouse embryogenesis in the developing central nervous system and in the adult mouse brain.  相似文献   

13.
含高阶项Trapped离子振动态的崩塌-回复特性   总被引:1,自引:1,他引:0  
解析分析了“捕陷”离子在驻波光场作用下的动力学。离子的量子平均能量随时间的变化呈现崩塌 -回复的特征 ,表明这个系统的振动态具有压缩效应。哈密顿量中的高阶项使得离子平均能量呈现不规则的崩塌 -回复 ,严重抑制离子的振动态的相干性。  相似文献   

14.
The steady state surfaces of ion bombarded 3C-, 4H- and 6H-SiC samples were studied by means of reflected electron energy loss spectroscopy (REELS). The REELS exhibit a well-defined loss peak in the region of about 20 eV. The position of the maximum of the loss peak depends on the bombarding ion energy (decreasing with increasing ion energy), and on the primary electron beam energy (increasing with increasing primary energy). This behavior can be explained if we suppose that the plasmon energy in the altered layer (produced by ion bombardment) is different from that of the unaltered bulk. In this case the measured loss peak is the sum of two overlapping plasmon peaks. With modeling the system as a homogeneous altered layer and a homogeneous unaltered substrate the plasmon energy in the altered layer was derived to be 19.8 eV. The large change of the plasmon energy with respect to the bulk value of 23 eV is explained by a thin low density overlayer on the surface of the sample produced by the ion bombardment.  相似文献   

15.
A system of equations for electron gas and lattice around and along the trajectory of a heavy uranium ion with an energy of 700 MeV in nickel at constant heat capacity and heat conduction taken at room temperature is solved numerically in an axially symmetric cylindrical coordinate system. On the basis of the lattice temperature obtained as a function of radius around the ion trajectory and depth, a conclusion is made that the ionization energy losses of a uranium ion in nickel are sufficient for melting and evaporating the material from the surface. The maximum radius and depth of the region in which melting and evaporation take place are estimated.  相似文献   

16.
简要介绍了低能辐照离子源的设计及性能。采用热阴极磁约束PIG放电,并用两极多孔加减速系统引出离子束。调试结果:离子束能量在200-2000eV范围内可调,最大引出束流150mA,灯丝工作寿命160h。  相似文献   

17.
This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans‐genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light‐gated ion channels.  相似文献   

18.
The importance of the sodium ion transport in biological systems is well known. Numerous studies have dealt with compounds which affect ion transport across membrane systems. However, the mechanism of ion transport across the membrane is still not clear. Hence it is of interest to investigate the interaction of the sodium ion with biologically active compounds in a system where the complex membrane is absent. Such a method of investigation must be able to detect very weak interactions. Sodium-23 nuclear magnetic resonance fits well into this classification. This technique has been used by others1 and by us2 to investigate electrolyte solutions and biological or model systems. We have been interested in the chemistry of cyclopolymethy-lenetetrazoles for some time.3 These compounds are characterized by their strong stimulating action on the central nervous system and, in  相似文献   

19.
Glycosphingolipids (GSLs) are present on cell surface membranes and are particularly abundant in the brain. Since over 300-400 GSLs are synthesized from glucosylceramide (GlcCer), GlcCer is believed to only serve as the source of most GSLs, including sialic acid-containing GSLs or gangliosides, in the brain. Recent studies, however, suggest that GlcCer itself plays a role in the heat stress response, as it functions as a glucose donor for the synthesis of cholesterylglucoside, a lipid mediator in heat stress responses in animals. GlcCer in adipose tissues is also thought to be involved in mechanisms that regulate energy (sugar and lipid) metabolism. Our extensive structural study revealed an additional novel glucosylated membrane lipid, called phosphatidylglucoside, in developing rodent brains and human neutrophils. These lipids, all modified with glucose, are enriched in lipid rafts and play important roles in basic cellular processes. Here, I summarize the recent progress regarding these glucosylated lipids and their biosynthesis and regulation in the central nervous system (CNS).  相似文献   

20.

Background  

P2X2 receptor is an ATP-activated ion channel which is widely expressed in the nervous system, and mediates synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号