首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马军  谢振博  陈江星 《物理学报》2012,61(3):38701-038701
实验发现大脑皮层内出现螺旋波且螺旋波对神经元电信号传递有积极作用.利用细胞网络方法从对大脑皮层观察到的螺旋波进行数值模拟.以包含温度因子的热敏神经元模型在二维空间构造规则网络,研究了神经元膜片温度参数对神经元网络中螺旋波演化影响;定义了一类统计同步因子来刻画温度因子引起螺旋波相变(破裂和死亡)的临界条件.发现在规则网络下,当温度超过一定值后螺旋波会死亡和消失而导致整个网络达到均匀同步;在考虑了弱通道噪声情况下,螺旋波温度超越一定临界值则引起螺旋波的破裂.进一步分析了暂时性发烧昏迷的可能机制在于神经系统某些功能区螺旋波传播电信号的中断.  相似文献   

2.
The principles and mechanisms of information processing in the brain are among key fundamental problems of modern science. Neurons being the main signal cells of the brain provide the transmission and transformation of sequences of electrical pulses in a neural network. Signal networks include not only neurons but also glial cells called astrocytes executing regulatory functions, as is accepted in neurobiology. In this work, a morphofunctional (compartment) model of an astrocyte has been proposed. It has been shown that the astrocyte can serve as a detector of synchronous events of different points of the neural network, generating a calcium response signal. In turn, this signal induces the synchronous ejection of neuroactive substances to the corresponding points of the network, which can enhance the spatial synchronization of neurons or the synchronous modulation of different neural paths.  相似文献   

3.
Li-Cong Li 《中国物理 B》2021,30(6):68702-068702
Extremely low-frequency magnetic field is widely used as a noninvasive stimulation method in clinical practice and basic research. Electrical field induced from magnetic pulse can decrease or increase neuronal electrical activity. However, the cellular mechanism underlying the effects of magnetic field is not clear from experimental data. Recent studies have demonstrated that "non-neuronal" cells, especially astrocytes, may be the potential effector for transcranial magnetic stimulation (TMS). In the present study, we implemented a neural-astrocyte microcircuit computational model based on hippocampal architecture to investigate the biological effects of different magnetic field frequencies on cells. The purpose of the present study is to elucidate the main influencing factors of MS to allow a better understanding of its mechanisms. Our model reproduced the basic characteristics of the neuron and astrocyte response to different magnetic stimulation. The results predict that interneurons with lower firing thresholds were more active in magnetic fields by contrast to pyramidal neurons. And the synaptic coupling strength between the connected neurons may be one of the critical factor to affect the effect of magnetic field on cells. In addition, the simulations show that astrocytes can decrease or increase slow inward currents (SICs) to finely tune neuronal excitation, which suggests their key role in excitatory-inhibitory balance. The interaction between neurons and astrocytes may represent a novel target for effective therapeutic strategies involving magnetic stimulation.  相似文献   

4.
A high sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber is proposed in this work.In order to achieve high sensitivity and high stability,the gold layer is coated on the side-polished photonic crystal fiber to support surface plasmon resonance.The mixture of ethanol and chloroform is used as the thermosensitive liquid.The performances of the proposed temperature sensor were investigated by the finite element method(FEM).Simulation results indicate that the sensitivity of the temperature sensor is as high as 7.82 nm/℃.It has good linearity(R;=0.99803),the resolution of 1.1×10;℃,and the amplitude sensitivity of 0.1008℃;.In addition,the sizes of the small air hole and polishing depth have little influence on the sensitivity.Therefore,the proposed sensor shows a high structure tolerance.The excellent performance and high structure tolerance of the sensor make it an appropriate choice for temperature measurement.  相似文献   

5.
Here we present a new model for the generation of complex calcium-bursting patterns in astrocytes, a type of brain cell recently implicated in a variety of neural functions including memory formation. The model involves two positive feedback processes, in which the key feedback species are calcium ion and glutamate. The latter is the most abundant excitatory neurotransmitter in the brain and has been shown to be involved in bidirectional communication between astrocytes and nearby neurons. The glutamate feedback process considered here is shown to be critical for the generation of complex bursting oscillations in the astrocytes and to, perhaps, code for information which may be passed from neuron to neuron via the astrocyte. These processes may be involved in memory storage and formation as well as in mechanisms which lead to dynamical diseases such as epilepsy.  相似文献   

6.
The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection and information transmission in neural systems.Moreover,the complex electrical activities of a cell can induce time-varying electromagnetic fields,of which the internal fluctuation can change collective electrical activities of neuronal networks.However,in the past there have been a few corresponding research papers on the influence of the electromagnetic induction among neurons on the collective dynamics of the complex system.Therefore,modeling each node by imposing electromagnetic radiation on the networks and investigating stochastic resonance in a hybrid network can extend the interest of the work to the understanding of these network dynamics.In this paper,we construct a small-world network consisting of excitatory neurons and inhibitory neurons,in which the effect of electromagnetic induction that is considered by using magnetic flow and the modulation of magnetic flow on membrane potential is described by using memristor coupling.According to our proposed network model,we investigate the effect of induced electric field generated by magnetic stimulation on the transition of bursting phase synchronization of neuronal system under electromagnetic radiation.It is shown that the intensity and frequency of the electric field can induce the transition of the network bursting phase synchronization.Moreover,we also analyze the effect of magnetic flow on the detection of weak signals and stochastic resonance by introducing a subthreshold pacemaker into a single cell of the network and we find that there is an optimal electromagnetic radiation intensity,where the phenomenon of stochastic resonance occurs and the degree of response to the weak signal is maximized.Simulation results show that the extension of the subthreshold pacemaker in the network also depends greatly on coupling strength.The presented results may have important implications for the theoretical study of magnetic stimulation technology,thus promoting further development of transcranial magnetic stimulation(TMS) as an effective means of treating certain neurological diseases.  相似文献   

7.
Stochastic synchronization analysis is applied to intracellular calcium oscillations in astrocyte cultures prepared from epileptic human temporal lobe. The same methods are applied to astrocyte cultures prepared from normal rat hippocampus. Our results indicate that phase-repulsive coupling in epileptic human astrocyte cultures is stronger, leading to an increased synchronization in epileptic human compared to normal rat astrocyte cultures.  相似文献   

8.
近年来,低温热处理刚玉出现在宝石交易市场,由于其特征容易与天然刚玉混淆,如何鉴定低温热处理刚玉成为宝石实验室的研究热点。在弱氧化氛围,360,610和650 ℃条件下,先后对9粒刚玉进行了热处理实验,并采用显微拉曼定性分析刚玉中的包裹体、显微镜下观察包裹体形貌、显微红外光谱分析含水矿物包裹体中羟基的特征峰等方法,对刚玉低温热处理前后的特征进行了对比研究。热处理实验揭示:600 ℃左右温度、弱氧化氛围已能有效去除刚玉中的蓝色调,并增强红色,可达到热处理改善或改变刚玉颜色的目的。研究结果表明:针铁矿、高岭石、勃姆石等含水矿物包体主要存在于刚玉的开放裂隙中,硬水铝石、磷灰石、云母等含水矿物包体主要存在于刚玉晶体中。针铁矿热处理前红外光谱可显示与羟基相关的3 435 cm-1吸收峰,并伴有以3 185 cm-1为中心的吸收宽带,经360 ℃热处理后相关吸收消失,其颜色由亮黄色变为红色;高岭石热处理前红外光谱在3 620,3 648,3 670和3 698 cm-1附近显示一组与羟基相关的吸收峰,经610 ℃热处理后相关吸收峰消失;勃姆石热处理前红外光谱显示与羟基相关的3 086和3 311 cm-1吸收峰,经610 ℃热处理后相关吸收峰消失。硬水铝石包裹体通常呈针状,热处理前红外光谱显示与羟基相关的1 980和2 110 cm-1吸收峰,经610 ℃热处理后相关吸收峰消失,但仍保持针状晶形假像;磷灰石包体通常呈透明柱状或粒状晶形,由于OH与F相互作用,红外光谱在3 550 cm-1附近显示与羟基相关的吸收峰,610 ℃热处理后相关吸收峰仍然存在,磷灰石包体的形貌未见改变;白云母呈近透明无色片状晶形分布于刚玉中,红外光谱在3 624 cm-1附近显示与云母中羟基相关的吸收峰,650 ℃热处理后这一吸收峰仍然存在,云母的形状未见变化,透明度略微降低。通过实验,证明含水矿物包裹体对于鉴定低温热处理刚玉具有重要作用。  相似文献   

9.
石霞  陆启韶 《中国物理》2005,14(6):1082-1087
研究了噪声对Hindmarsh-Rose(HR)神经元随机自共振和同步的影响。将高斯白噪声加入HR神经元模型的膜电位上,把外界直流电作为分岔参数,分别考虑参数处于Hopf分岔前、Hopf分岔附近和Hopf分岔后时,噪声影响下的随机自共振现象。两个未经耦合的全同HR神经元,如果接受相同的噪声激励,只要噪声强度高于某临界值,就能达到完全同步。进一步,噪声能够增强弱耦合神经元的完全同步。数值结果表明簇放电的神经元比峰放电的神经元更容易被噪声诱导而达到完全同步,耦合也增强了神经元对噪声激励的灵敏度。  相似文献   

10.
Effects of coupling distance on synchronization and coherence of chaotic neurons in complex networks are numerically investigated. We find that it is not beneficial to neurons synchronization if confining the coupling distance of random edges to a limit dmax but help to improve their coherence. Moreover, there is an optimal value of dmax at which the coherence is maximum.  相似文献   

11.
石霞  陆启韶 《中国物理》2005,14(6):1088-1094
Noise effects on coherence resonance and synchronization of Hindmarsh-Rose (HR) neuron model are studied. The coherence resonance of a single HR neuron with Gaussian white noise added to the membrane potential is investigated in situations before, near and after the Hopf bifurcation, separately, with the external direct current as a bifurcation parameter. It is shown that even though there is no coupling between neurons, uncoupled identical HR neurons driven by a common noise can achieve complete synchronization when the noise intensity is higher than a critical value. Furthermore, noise also enhances complete synchronization of weakly coupled neurons. It is concluded that synchronization in bursting neurons is easier to be induced than in spiking ones, and coupling enhances the sensitivity of synchronization of neurons to noise stimulus.  相似文献   

12.
利用一维辐射传递方程及LBLRTM逐线积分模式建立计算模型,对工业革命前与目前大气构成情况下温室效应的能量分布及其光谱吸收机理进行分析,在保持温室气体浓度为当前水平的基础上,研究温室效应能量分布与地表温度之间的相互耦合机理.结果表明:工业革命前地球的温暖环境主要来自于大气温室气体的(100~370)cm-1、(640~710)cm-1以及(1370~2000)cm-1三个强吸收带对于地球长波辐射的吸收,而地球当前的变暖则源自于大气的(370~640)cm-1和(710~1370)cm-1两个弱吸收带的作用,其对工业革命以来所额外增加的温室效应贡献分别达到了25%和55%;地表温度升高,温室效应在全波段范围内也会随之增强,但不同谱带处的温室效应贡献以地球平均温度所对应的辐射峰值波数为界线,峰值波数右侧的温室效应贡献将会增加,在其左侧的贡献比例则会减小.  相似文献   

13.
秦玉香  刘成  谢威威  崔梦阳 《中国物理 B》2016,25(2):27307-027307
Ultrathin VO_2 nanobelts with rough alignment features are prepared on the induction layer-coated substrates by an ethylenediaminetetraacetic acid(EDTA)-mediated hydrothermal process. EDTA acts as a chelating reagent and capping agent to facilitate the one-dimensional(1D) preferential growth of ultrathin VO_2 nanobelts with high crystallinities and good uniformities. The annealed induction layer and concentration of EDTA are found to play crucial roles in the formation of aligned and ultrathin nanobelts. Variation in EDTA concentration can change the VO_2 morphology of ultrathin nanobelts into that of thick nanoplates. Mild annealing of ultrathin VO_2 nanobelts at 350℃ in air results in the formation of V_2O_5 nanobelts with a nearly unchanged ultrathin structure. The nucleation and growth mechanism involved in the formations of nanobelts and nanoplates are proposed. The ethanol gas sensing properties of the V_2O_5 nanobelt networks-based sensor are investigated in a temperature range from 100℃ to 300℃ over ethanol concentrations ranging from 3 ppm to 500 ppm.The results indicate that the V_2O_5 nanobelt network sensor exhibits high sensitivity, good reversibility, and fast responserecovery characteristics with an optimal working temperature of 250℃.  相似文献   

14.
For a system of type-I neurons bidirectionally coupled through a nonlinear feedback mechanism, we discuss the issue of noise-induced complete synchronization (CS). For the inputs to the neurons, we point out that the rate of change of instantaneous frequency with the instantaneous phase of the stochastic inputs to each neuron matches exactly with that for the other in the event of CS of their outputs. Our observation can be exploited in practical situations to produce completely synchronized outputs in artificial devices. For excitatory-excitatory synaptic coupling, a functional dependence for the synchronization error on coupling and noise strengths is obtained. Finally, we report a noise-induced CS between nonidentical neurons coupled bidirectionally through random nonzero couplings in an all-to-all way in a large neuronal ensemble.  相似文献   

15.
采用C-V法,根据C-2-V曲线和C-3-V曲线,并结合C-V幂律指数k,分析了T=25~-195℃温度范围内,温度变化对GaN基蓝光发光二极管pn结类型的影响。实验结果表明:当T为25℃和-50℃时,C-2-V呈明显的线性关系,同时幂律指数k为0.5,说明该温度范围内的pn结类型为严格的突变结;而温度降低至-100℃时,k值变为0.45,说明pn结类型开始发生变化;当温度继续降低至-150℃和-195℃时,幂律指数k分别为0.30和0.28,说明pn结类型已经发生了变化,变为非突变非缓变结。造成这一现象的原因是低温导致的载流子冻析效应,以及晶体的缺陷和界面态形成的局域空间电荷区在低温环境下,影响了pn结原来的空间电荷分布,并改变了pn结类型。  相似文献   

16.
Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used.  相似文献   

17.
孙晓娟  杨白桦  吴晔  肖井华 《物理学报》2014,63(18):180507-180507
以一维环形耦合的非全同FitzHugh-Nagumo神经元网络为研究对象,讨论这种异质神经元在环上的不同排列对其频率同步的影响.研究结果显示,异质神经元的排列不同,对应的神经元网络达到频率同步所需的临界耦合强度也不完全相同.在平均意义下,异质性较小的神经元在环上的距离越近,神经元网络达到频率同步所需的临界耦合强度越大;相反,异质性较大的神经元在环上的距离越近,神经元网络达到同步所需的临界耦合强度越小.通过对频率同步过程的分析,进一步给出了产生这一现象的动力学机理.  相似文献   

18.
In this paper, we study the dynamics of a system of two model neurons interacting via the electrical synapse. Each neuron is described by a two-dimensional discontinuous map. A chaotic relaxational-type attractor, which corresponds to the spiking-bursting chaotic oscillations of neurons is shown to exist in a four-dimensional phase space. It is found that the dynamical mechanism of formation of chaotic bursts is based on a new phenomenon of generation of transient chaotic oscillations. It is demonstrated that transition from the chaotic-burst generation to the state of relative rest occurs with a certain time delay. A new characteristic which estimates the degree of synchronization of the spiking-bursting oscillations is introduced. The dependence of the synchronization degree on the strength of coupling of the ensemble elements is studied.  相似文献   

19.
Encoding information by firing patterns is one of the basic neural functions, and synchronization is important collective behaviour of a group of coupled neurons. Taking account of two schemes for encoding information (that is, rate coding and temporal coding), rhythm synchronization of coupled neurons is studied. There are two types of rhythm synchronization of neurons: spike and burst synchronizations. Firstly, it is shown that the spike synchronization is equivalent to the phase synchronization for coupled neurons. Secondly, the similarity function of the slow variables of neurons, which have relevant to the bursting process, is proposed to judge the burst synchronization. It is also found that the burst synchronization can be achieved more easily than the spike synchronization, whatever the firing patterns of the neurons are. Hence the temporal encoding scheme, which is closely related to both the spike and burst synchronizations, is more comprehensive than the rate coding scheme in essence.  相似文献   

20.
《中国物理 B》2021,30(10):100501-100501
Temperature has distinct influence on the activation of ion channels and the excitability of neurons, and careful change in temperature can induce possible mode transition in the neural activities. The formation and development of autapse connection to neuron can enhance its self-adaption to external stimulus, and thus the firing patterns in neuron can be controlled effectively. The autapse is activated to drive a thermosensitive neuron, which is developed from the FitzHugh–Nagumo neural circuit by incorporating a thermistor, and the dynamics in the neural activities is explored to find mode dependence on the temperature and autaptic current. It is found that the firing modes can be controlled by temperature, and the neuron is wakened from resting state to periodic oscillation with the increase of temperature. Furthermore, the intensity and the intrinsic time delay in the autapse are respectively adjusted to control the neural activities, and it is confirmed that appropriate setting for autaptic current can balance and enhance the temperature effect on the neural activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号