首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
采用金属有机化学气相淀积(MOCVD)法在InP衬底卜低温生长6个周期的InGaAsP多量子阱薄膜,薄膜对1.06μm激光的小信号透过率为23%.该薄膜兼作Nd:YAG激光器的可饱和吸收体及耦合输出镜,实现1.064 μm激光的被动锁模运转,获得平均脉宽23 ps,能量15 mJ的单脉冲序列.采用射频磁控溅射法在石英衬底上制备4个周期的Si/SiNx多量子阱薄膜,样品在氮气环境下以1000℃退火30 min后,插入Nd:YAG激光器腔内,实现1.064μm激光的被动锁模,获得脉宽30 ps的脉冲序列.多量子阱半导体薄膜作为可饱和吸收体实现激光器的被动锁模具有成本低、设计和制作简单、运转稳定和使用方便的优点.  相似文献   

2.
马骁宇  张娜玲  仲莉  刘素平  井红旗 《强激光与粒子束》2020,32(12):121010-1-121010-10
高功率半导体激光器是固体激光器和光纤激光器的主要泵浦源。激光泵浦源性能的大幅提升直接促进了固体激光器、光纤激光器等激光器的发展。主要介绍了8xx nm和9xx nm系列半导体激光泵浦源的最新研究进展,8xx nm单管输出功率已达18.8 W@95μm,巴条输出功率已达1.8 kW(QCW),9xx nm单管输出功率已达35 W@100μm,巴条输出功率已达1.98 kW(QCW)。谱宽<1 nm的窄谱宽半导体激光器输出功率可达14 W。展望了未来半导体激光器泵浦源的发展趋势。  相似文献   

3.
InGaAsP分别限制量子阱激光器   总被引:1,自引:0,他引:1  
长波长InGaAsP量子阱激光器,以其低阈值、窄光谱线宽和高的调制频带宽等优良特性而成为大容量通信的基础。为此,我们利用低压MOVCD技术生长了1.62μm和1.3μm的InGaAsP材料,测得其77K光荧光(PL)谱线半峰高宽分别为18.7meV和28meV.利用X射线双晶衍射测得两种材料的晶格失配度不大于1×10-3.并生长了四个不同阱宽的InGaAsP/InP量子阱结构,测得77K温度下的PL谱,分析了阱宽对发光波长及半峰宽的影响,并提出在量子阱激光器中减小界面层影响的方法。在此基础上,生长了分别限制量子阱激光器结构,并利用质子轰击制备出条形结构激光器,测得其最低阈值电流为100mA.直流工作光谱峰值波长为1.52μm左右,单面输出外微分量子效率约为36%.  相似文献   

4.
基于半导体量子阱激光器的基本理论,设计了合理的1.3μm无致冷AlGaInAs/InP应变补偿量子阱激光器结构,通过低压金属有机化学气相外延(LP-MOVPE)工艺在国内首次生长出了高质量的AlGaInAs/InP应变补偿量子阱结构材料,用此材料制作的器件指标为激射波长:1280nm≤λ≤1320nm,阈值电流:Ith(25℃)≤15mA,Ith(85℃)≤30mA,量子效率变化:Δηex(25℃~85℃)≤1.0dB,线性功率:P0≥10mW  相似文献   

5.
10.6μm激光诱导扩散中热致破坏的抑制   总被引:2,自引:0,他引:2  
在半导体激光诱导扩散实验中,用连续波CO2 10.6μm激光聚焦后照射基片表面。为实现局部区域的选择扩散,激光光斑半径仅数十微米。要使曝光区温度达到扩散实验要求,必须使曝光区功率密度很高。另一方面,Si、InP等半导体材料对10.6μm波长激光的吸收系数随温度的升高而增大,这导致实验时容易产生热致破坏,损伤基片。在分析热致破坏的产生机理后,提出了在聚焦激光束照射下,曝光区温度的数值计算方法。计算结果表明,在半导体基片初始温度为室温时,以恒定功率的激光束照射基片,曝光区温度不能稳定在扩散试验需要的温度范围。在此基础上,提出了预热基片及对曝光区温度进行实时控制等抑制热致破坏的方法,有效地克服了这一困难。这对于用激光微细加工制作出高性能的单片光电集成电路(OEICs)器件有重要意义。  相似文献   

6.
在红光半导体激光器芯片上采用GaAs介质膜进行无杂质空位扩散诱导量子阱混杂研究。激光器芯片的有源区由一个9 nm厚的GaInP量子阱和两个350 nm厚的AlGaInP量子垒构成,利用MOCVD方法在芯片表面生长GaAs介质膜。在950℃的情况下进行不同时长不同GaAs层厚度的高温快速热退火诱发量子阱混杂。通过光致发光光谱分析样品混杂之后的波长蓝移情况和光谱半峰全宽变化规律。当退火时间达到120 s时,样品获得53.4 nm的最大波长蓝移;在1 min退火时间下获得18 nm的最小光谱半峰全宽。  相似文献   

7.
LP-MOCVD生长温度对InGaAs性能的影响   总被引:2,自引:0,他引:2  
刘宝林  杨树人 《发光学报》1993,14(4):387-390
众所周知,InGaAs在InP和GaAs二个系列材料中具有最大的载流子迁移率和最大的饱和速率,InGaAs/GaAs应变量子阱可以把GaAs的发射波长从0.83μm延伸到1.1μm[1],而InGaAs/InP量子阱激光器又可以实现1.1~1.8μm内任意波长发射[2],并且,InGaAs/InP探测器的响应波长范围为0.93μm~1.65μm[3],因此,它不论对高速电子器件如HBT和HEMT,还是光电子器件如激光器(LD)和探测器(PIN和APD)都具有极重要的意义。  相似文献   

8.
为了提高器件的可靠性和使用寿命,设计并研制了一种将p-n结和有源层分开的高功率AlGaAs/GaAs单量子阱远异质结(SQW-RJH)激光器,发射波长为808nm,腔长900μm,条宽100μm,其外延结构与通常的808nm AlGaAs/GaAs单量子阱半导体激光器的结构不同,在p-n结和有源区间多了一层p型AlGaAs层,其厚度约为0.1μm。为减小衬底表面位错对外延层质量的影响,在n^ -GaAs衬底和n-Al0.5Ga0.5As下包层间加一层n^ -GaAs缓冲层。对器件进行了电导数测试及恒流电老化实验。与常规AlGaAs/GaAs大功率半导体激光器相比,远结大功率半导体激光器具有阈值电流Ith偏大、导通电压Vth偏高的直流特性。3000h的恒流电老化结果表明,器件在老化初期表现出阈值电流随老化时间缓慢下降,输出功率随老化时间缓慢上升的远结特性。  相似文献   

9.
采用低压金属有机化合物气相沉积法(LP-MOCVD)生长并制作了1.6—1.7μm大应变InGaAs/InGaAsP分布反馈激光器.采用应变缓冲层技术,得到质量良好的大应变InGaAs/InP体材料.器件采用了4个大应变的量子阱,加入了载流子阻挡层改善器件的温度特性.1.66μm和1.74μm未镀膜的3μm脊型波导器件阈值电流低(小于15mA),输出功率高(100mA时大于14mW).从10—40℃,1.74μm激光器的特征温度T0=57K,和1.55μm InGaAsP分布反馈激光器的特征温度相当. 关键词: MOCVD InGaAs/InGaAsP 应变量子阱 分布反馈激光器  相似文献   

10.
将石墨烯作为宽带可饱和吸收体分别应用在1.06μm Nd∶YAG固体激光器、2μm Tm∶YAP固体激光器以及1.55μm掺铒全光纤激光中.石墨烯采用化学汽相沉积法制备,以乙炔作为碳源,25μm厚的铜箔作为生长基体和催化剂,H2为载气,Ar为辅助气体,在常压、1 000℃高温条件下进行生长.1.06μm Nd∶YAG固体激光器实验中,采用直线型侧面泵浦腔型结构,当输出功率为10W时,得到了重复频率为360kHz,脉冲宽度240ns的最短脉冲输出,其单脉冲能量为27μJ,峰值功率为115.7W;2μm Tm∶YAP固体激光器实验中,使用中心波长在795nm附近的半导体激光器作为泵浦源,采用10%透过率的输出镜获得了脉宽为1.4μs的最窄调Q脉冲;环形腔1.55μm掺铒全光纤激光器实验中,利用1.25m长的高掺铒光纤作为增益光纤,当泵浦功率为100mW时,输出功率为10mW,获得了脉冲宽度314ps的稳定被动连续锁模脉冲,脉冲重复频率为20MHz并验证了同次制备的石墨烯的宽带可饱和吸收特性.  相似文献   

11.
徐琴芳  尹默娟  孔德欢  王叶兵  卢本全  郭阳  常宏 《物理学报》2018,67(8):80601-080601
提出一种结合注入锁定技术的主动滤波放大方法,将光梳直接注入锁定至光栅外腔半导体激光器,产生窄线宽激光光源,该光源可以用于锶原子光钟二级冷却.实验中,将中心波长为689 nm,带宽为10 nm的光梳种子光源注入689 nm光栅式外腔半导体激光器,通过半导体增益光谱与半导体光栅外腔,从飞秒光梳的多个纵模梳齿中挑选出一个纵模模式来进行增益放大,再通过模式竞争,实现单纵模连续光输出;同时,光梳的重复频率锁定在线宽为赫兹量级的698 nm超稳激光光源上,因此,注入锁定后输出的窄线宽激光也继承了超稳激光光源的光谱特性.利用得到的输出功率为12 mW的689 nm窄线宽激光光源实现了88Sr原子光钟的二级冷却过程,最终获得温度为3μK,原子数约为5×10~6的冷原子团.该方法可拓展至原子光钟其他光源的获得,从而实现原子光钟的集成化和小型化.  相似文献   

12.
类锂铝10.57和15.47纳米X光激光增益研究   总被引:2,自引:0,他引:2  
在LF-11(10^(11)W)激光装置上,开展了类锂铝(Al^(10+))的X光激光实验研究。实验中,激光器运行在线聚焦工作状态,波长1.06μm,脉冲宽度约为200ps,能量约20J。线聚焦长12mm,宽约100μm。实验中使用了厚铝靶(1.2μm)和薄膜铝靶(60和94.7nm),用时间积分掠入射光栅谱仪测量线状等离子体轴向XUV谱,用针孔照相机监视线聚焦状态。结果表明,Al^(10+)离子的10.57(3d-5f)和15.47(3d-4f)nm线的强度随等离子体的长度呈现明显的非线性增长。这两条激光跃迁线,用60nm铝靶时,增益系数分别为3.18和2.26cm^(-1);用1.2μm铝靶时,增益系数分别为1.67和0.91cm^(-1);用94.7nm铝靶时,波长为10.57nm线的增益系数为1.78cm^(-1)。说明厚度合适的薄膜靶能获得较高的增益。  相似文献   

13.
光谱稳定的低功耗980nm单模泵浦源半导体激光器   总被引:1,自引:1,他引:0  
由于在很多特殊应用领域要求980 nm泵浦源半导体激光器具有光谱稳定、低功耗等,本文通过对980nm单模半导体激光器的腔长、腔面反射率及光纤光栅反射率等优化设计,研制出低阈值、高功率980 nm光纤光栅外腔波长稳定半导体激光器。该低功耗、波长稳定的单模半导体激光器,在100 m A工作电流下尾纤输出功率达到51 m W,3 d B带宽为0.16 nm,边模抑制比大于40 d B,器件在250 m A工作电流下,尾纤输出功率达到120 m W。  相似文献   

14.
LD泵浦瓦级单模高掺铒中红外光纤激光器(英文)   总被引:1,自引:1,他引:0  
中红外激光在激光医疗、激光光谱学和红外对抗等领域有着广泛的应用前景.为了获得结构紧凑、便携性好的中红外激光源,采用975nm半导体激光器泵浦高掺铒氟化物双包层光纤实现了2.8μm的中红外光纤激光输出.将光纤耦合输出的中心波长为975nm的半导体激光,经过消像差非球面透镜系统耦合进双包层光纤,激光谐振腔由高反镜和具有4%菲涅耳反射率的光纤端面组成,当注入到增益光纤的泵浦功率高于0.37 W时,获得了中红外激光输出.实验结果表明:中红外光纤激光器中心波长为2.785μm,谱宽0.9nm;工作阈值为0.37W,最大输出功率为0.98W,斜率效率为17%,激光工作模式为单模.利用高掺杂浓度铒离子间的能量转移上转换,获得了高效率瓦级单模中红外光纤激光输出.  相似文献   

15.
张应变GaAs_(1-x)P_x量子阱是高性能大功率半导体激光器的核心有源区,基于能带结构分析优化其结构参数具有重要的应用指导意义.首先,基于6×6 Luttinger-Kohn模型,采用有限差分法计算了张应变GaAs_(1-x)P_x量子阱的能带结构,得到了第一子带间跃迁波长固定为近800 nm时的阱宽-阱组分关系,即随着阱组分x的增加,需同时增大阱宽,且阱宽较大时靠近价带顶的是轻空穴第一子带lh_1,阱宽较小时靠近价带顶的是重空穴第一子带hh_1.计算并分析了导带第一子带c_1到价带子带lh_1和hh_1的跃迁动量矩阵元.针对808 nm量子阱激光器,模拟计算了阈值增益与阱宽的关系,得到大阱宽有利于横磁模激射,小阱宽有利于横电模激射.进一步考虑了自发辐射和俄歇复合之后,模拟计算了808 nm量子阱激光器的阱宽与阈值电流密度的关系,阱宽较大时载流子对高能级子带的填充使得阈值电流密度增加,而阱宽较小时则是低的有源区光限制因子导致阈值电流密度升高,因此存在一最佳的阱宽-阱组分组合,可使阈值电流密度达到最小.本文的模拟结果可对张应变GaAs_(1-x)P_x量子阱激光器的理论分析和结构设计提供理论指导.  相似文献   

16.
邓永丽  李庆  黄学杰 《中国光学》2018,11(6):974-982
为适应锂离子动力电池行业发展需求,寻求一种高效高质切片方式,本文研究了多种激光器的切片质量。通过影像测量仪和扫描电镜(SEM)对比发现,100 ns脉宽调Q型1 064 nm光纤激光器切割正极铝箔时毛刺和热影响区(HAZ)约为15μm和60μm,切负极铜箔时HAZ约为200μm; 20 ns脉宽的MOPA光纤激光器切割铝箔毛刺10μm,HAZ约为20μm,切铜箔时HAZ约70μm;脉宽为10 ps的固体激光器切割铝箔毛刺和HAZ分别约为6μm和10μm,切铜箔时实现无熔融重凝区; 20 ns脉宽的355 nm紫外和532 nm的绿光固体激光器切割铝箔HAZ分别为10μm和17μm,切铜箔时HAZ则分别为大于70μm和100μm。实验结果表明:脉宽越窄,重复频率越高,切割的极片质量越好,ps激光器切割的极片精度最高,质量最好,是切割极片最理想激光器。而目前,频率高、脉宽相对窄的MOPA光纤激光器切割速度最高,切割的正极片完全满足工业要求,更适合极片切割的工业推广。  相似文献   

17.
880nm半导体激光主动照明光纤耦合模块   总被引:3,自引:1,他引:2       下载免费PDF全文
为降低半导体激光主动照明红曝,选择波长880 nm大功率半导体激光器作为新型激光主动照明成像系统光源。根据光纤耦合过程光参数积不变原理,研制出波长880 nm大功率半导体激光器阵列单光纤耦合模块,利用光纤匀光作用使激光光束匀化整圆后用于激光主动照明。首次在波长880 nm大功率半导体激光器上采用阶梯反射镜光束整形方法,使激光光参数积与光纤匹配,激光高效耦合进入纤芯400μm、数值孔径0.22的光纤。室温条件下光纤耦合模块连续输出功率44.9 W,电光转化效率35%,波长880 nm大功率半导体激光器阵列光纤耦合模块,不仅其红曝小而且对应CMOS图像传感器光谱响应度较高,系统成像质量好。  相似文献   

18.
介绍了一种新型半导体可饱和吸收镜(SESAM)的原理与特性,并用它来实现掺铒光纤激光器的锁模飞秒脉冲的生成.这种新型宽带SESAM调制深度可以达到20%,用在1.5μm波段的环形腔掺铒光纤激光器里,实现自启动锁模.锁模光谱以1559 nm为中心,半峰全宽为9 nm,锁模激光脉冲串重复频率为25.6 MHz,输出功率14 mW,自相关仪测得脉宽为170 fs.  相似文献   

19.
TN248.4 2006064958高效率1.06μm波段大功率半导体激光列阵模块=High efficiency 1.06μm wavelength high power diode array module[刊,中]/尧舜(中科院长春光机所激发态开放实验室.吉林.长春(130033)),套格套…//半导体光电.—2006,27(3).—260—262采用InGaAs/InGaAsP应变量子阱折射率分别限制(SCH)宽波导结构结合优化欧姆接触减小串联电阻的方法.制作出高效率大功率1.06μm波段半导体激光列阵模块。激光芯片宽1cm。腔长1200μm.条宽200μm。填充密度为50%,室温连续输出功率为50.2W时,光电转换效率达到56.9%。图3参10(严寒)  相似文献   

20.
808nm无铝大功率量子阱激光器   总被引:2,自引:1,他引:1       下载免费PDF全文
王立军  武胜利 《发光学报》1997,18(4):360-362
报导了用低压(LP)-MOCVD方法研制出808nm无铝InGaAsP/InGaP/GaAs单量子阱分别限制异质结构大功率激光器(SCHSQW),器件外微分量子效率为65%,阈值电流密度400A/cm2,特征温度120℃,对于100μm条宽、1000μm腔长宽接触激光器,室温连续输出光功率达1瓦以上,并讨论了无铝大功率激光器的阈值、光谱等特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号