首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some results of AC loss measurements are presented for 19, 61, 127-filamentary Bi-2223/Ag tapes prepared by the ‘powder-in-tube' method. All measurements have been made at T=77 K under sinusoidal transport current with frequency in the range of 30–600 Hz and the current amplitude up to 30 A. The measurements have been carried out both in self field conditions and at the external magnetic field applied to the tape at the different angles. The dependencies of the AC losses on current amplitude and frequency have been obtained. It is found that for all tapes the current amplitude dependencies of the AC losses show good agreement with the Norris prediction for an elliptical or strip geometry. The AC loss dependencies on frequency were linear. The measurements of AC losses in external magnetic field show that the change of AC losses is only through the change of the critical current. So the transport AC losses in the tapes are the ‘saturation losses' that is they are different from classic hysteresis losses.  相似文献   

2.
I Orak  A Kocyigit  &#  Al&#  ndal 《中国物理 B》2017,26(2):28102-028102
Au/Zn O/n-type Si device is obtained using atomic layer deposition(ALD) for Zn O layer, and some main electrical parameters are investigated, such as surface/interface state(Nss), barrier height(Φb), series resistance(Rs), donor concentration(Nd), and dielectric characterization depending on frequency or voltage. These parameters are acquired by use of impedance spectroscopy measurements at frequencies ranging from 10 k Hz to 1 MHz and the direct current(DC) bias voltages in a range from-2 V to +2 V at room temperature are used. The main electrical parameters and dielectric parameters,such as dielectric constant(ε"), dielectric loss(ε"), loss tangent(tan δ), the real and imaginary parts of electric modulus(M and M), and alternating current(AC) electrical conductivity(σ) are affected by changing voltage and frequency. The characterizations show that some main electrical parameters usually decrease with increasing frequency because charge carriers at surface states have not enough time to fallow an external AC signal at high frequencies, and all dielectric parameters strongly depend on the voltage and frequency especially in the depletion and accumulation regions. Consequently, it can be concluded that interfacial polarization and interface charges can easily follow AC signal at low frequencies.  相似文献   

3.
AC transport losses in a single superconducting tape, double-and triple-stacked Bi-2223/Ag superconducting tapes were measured by use of electrical method. The measurements were carried out at 77K with the frequency of AC transport currents ranging from 50 to 100Hz. The dependence of AC losses on frequency and the number of tapes in the stack were presented and analysed.  相似文献   

4.
Self-field AC losses of polycrystalline Bi-2212 thin rods textured by a Laser Floating Zone (LFZ) melting technique have been measured at 77 K. With the optimal processing parameters, these rods, of 1.6–2 mm diameter and 10 cm length, have a transport critical current density of 3 kA/cm2 in the self-field which decreases to about 1.5 kA/cm2 in fields of 0.02 T applied perpendicular to the rod axis. The self-field AC losses have been measured in DC magnetic fields up to 0.03 T. The measurements in zero field show that for a large current range the losses are dominated by hysteresis losses as described by the Critical State Model for a cylinder. For the measurements in DC fields the losses show an increasingly resistive-like dependence with current, while the hysteretic component expected from the CSM becomes less important. Measurements at different frequencies also indicated that the loss per cycle in fields is strongly frequency dependent.  相似文献   

5.
The AC self-field loss in Bi(2223)Ag-sheathed tapes with different number of filaments has been measured between 59 and 2500 Hz by means of a dual lock-in amplifier. Due to the wide frequency range of the measurements, we have been able to dissociate quantitatively the different self-field loss contributions: hysteretic, eddy current and resistive loss (near Ic). This is an important advantage compared to single frequency measurements where such loss dissociation is only qualitative. The hysteresis losses of the different tapes fall between Norris' predictions for elliptical and strip cross-section. The relative weight of eddy current loss is found to be inversely proportional to the current ratio—the higher the i, the less is their contribution. Frequency-independent resistive loss due to flux-creep is observed for high currents at low frequencies; this loss becomes quickly negligible with the increasing frequency.  相似文献   

6.
Experimental measurements of AC losses were carried out on Ag sheathed PbBi2223 tapes with twisted and untwisted filaments. Losses were measured at 77 K as function of frequency and magnetic field parallel and perpendicular to the tape surface, using appropriate pick-up loops. Both the first and third harmonics of the signal were measured, in order to distinguish between the hysteresis loss and other types of loss. The effect of filaments uncoupling by twisting was clearly identified. For a tape with a twist pitch of 10 mm and Ic=40 A (20 kA cm−2) operating at 43 Hz, the filaments are uncoupled in fields less than 40 mT, which is greater than the full penetration field for both the filaments and the tape. Hence, a reduction in the hysteretic loss of the superconducting core is realised at power frequency between 10 and 40 mT. Results form the self-field loss measurement implies the uncoupling of twisted filaments at relative low transport current (I<0.5Ic)  相似文献   

7.
For the most common AC application frequencies, the main component of the AC losses in multifilamentary Bi(2223) tapes are caused by hysteresis- and coupling losses. These losses can be reduced enhancing the matrix resistivity and applying a twist to the filaments. We report on the AC loss properties of 37-filament tapes with AgAu (8 wt.%) matrix, and novel 19-filament tapes with SrCO3 barriers between the filaments. We performed transport AC loss and magnetic AC loss measurements in parallel and perpendicular magnetic fields. Both kinds of tapes were also prepared with filament twists below a twist pitch of 20 mm. The influence of the different tape modifications on the AC loss behaviour is presented and compared with theoretical models to understand the effect of the resistive matrix. In the case of magnetic AC loss measurements, reduced AC losses due to decoupled filaments were observed for the twisted tapes with a resistive matrix in low parallel fields.  相似文献   

8.
In order to investigate of cobalt-doped interracial polyvinyl alcohol (PVA) layer and interface trap (Dit) effects, A1/p- Si Schottky barrier diodes (SBDs) are fabricated, and their electrical and dielectric properties are investigated at room temperature. The forward and reverse admittance measurements are carded out in the frequency and voltage ranges of 30 kHz-300 kHz and -5 V-6 V, respectively. C-V or er-V plots exhibit two distinct peaks corresponding to inversion and accumulation regions. The first peak is attributed to the existence of Dit, the other to the series resistance (Rs), and interfacial layer. Both the real and imaginary parts of dielectric constant (er and err) and electric modulus (Mr and Mrr), loss tangent (tan~), and AC electrical conductivity (aac) are investigated, each as a function of frequency and applied bias voltage. Each of the M~ versus V and Mrr versus V plots shows a peak and the magnitude of peak increases with the increasing of frequency. Especially due to the Dit and interfacial PVA layer, both capacitance (C) and conductance (G/w) values are strongly affected, which consequently contributes to deviation from both the electrical and dielectric properties of A1/Co-doped PVA/p-Si (MPS) type SBD. In addition, the voltage-dependent profile of Dit is obtained from the low-high frequency capacitance (CLF-CHF) method.  相似文献   

9.
BSCCO/Ag tape superconductors are developed for electrical power applications at liquid nitrogen temperatures. In these applications, e.g., superconducting transformers and power cables, an AC transport current and an AC magnetic field are present at the same time. A set-up to measure the influence of external AC magnetic field on the transport current loss, i.e., the voltage drop across a sample supplied with an AC transport current, has been developed. The magnetic field can be applied both parallel and perpendicular to the broad side of the tape conductor. An increase of the transport current loss due to the external AC magnetic field is observed. When a DC external magnetic field is applied the increase of the self-field loss can be described well by the decrease of the critical current due to the magnetic field. In the case of an AC external magnetic field this is only a minor effect. For magnetic field amplitudes higher than a certain threshold value the transport current loss is described reasonably well by the self-field loss and a dynamic resistance contribution calculated from the DC voltage–current relation in AC magnetic field.  相似文献   

10.
We report single-phase AC loss measurements on 8-, 4-, and 3-layer, multi-strand, HTS prototype conductors for power transmission lines. We use both calorimetric and electrical techniques. The agreement between the two techniques suggests that the interlayer current distribution in 1-m long conductors are representative of those in long conductors. The losses for the 8- and 4-layer conductors are in rough agreement, with the 8-layer losses being somewhat lower. The 3-layer conductor losses are substantially higher — probably due to unbalanced azimuthal currents for this configuration.  相似文献   

11.
Abstract

AC and DC electrical measurements between 273 and 800 K were used to characterize the electrical conductivity of Al2O3: Mg single crystals containing [Mg]0 centers. At low fields contacts are blocking. At high fields, electrical current flows steadily through the sample and the I–V characteristic corresponds to a directly biased barrier with a series resistance (bulk resistance). AC measurements yield values for the junction capacitance as well as for the sample resistance, and provide reproducible conductivity values. The conductivity varies linearly with the [Mg]0 concentration and a thermal activation energy of 0.67 eV was obtained, which agrees very well with the activation energy previously reported for the motion of free holes.  相似文献   

12.
本文研究以多芯不锈钢加强Bi2223/Ag带材绕制的45 kVA单相高温超导变压器的交流损耗特性.变压器绕组置于具有室温孔径的环形玻璃钢杜瓦内,铁芯穿过杜瓦室温孔径以保证铁芯与绕组分离并工作于室温环境.在77 K和工频下,基于Bean模型和绕组中的磁场分布计算了绕组的交流损耗,计算结果与传统电测法和热测法测量的变压器交流损耗结果一致;表明在77K绕组中交流损耗以磁滞损耗为主,涡流损耗和耦合损耗可以忽略不计.  相似文献   

13.
Numerical modelings of superconducting wires for AC loss calculations   总被引:2,自引:0,他引:2  
Superconducting properties of superconducting wires as well as the influence of their composite structure and twisting should be taken into account for their numerical modeling for AC loss calculations. Furthermore, complicated electromagnetic conditions in electrical apparatuses under which superconducting wires are used influence their AC loss properties; superconducting wires carry their transport current and are exposed to the external magnetic field whose direction and magnitude vary spatially. A series of numerical models of superconducting tapes based on the finite element method has been developed. In each model, some of the above-mentioned factors that could influence the AC loss properties are taken into account. The models are formulated with the current vector potential and the scalar magnetic potential (TΩ method). Superconducting property is given by the EJ characteristic represented by a power law. The current distributions in non-twisted and twisted superconducting tapes carrying their transport current and/or exposed to the external magnetic field are calculated with these models to estimate their AC loss. The current distribution in a short piece of superconducting tape exposed to AC magnetic field is also calculated.  相似文献   

14.
We measured the AC transport current loss of Bi 2223 multifilament Ag-sheathed tape under DC external magnetic field of 0–0.2 T. There were discrepancies between the measured data and Norris' formula for elliptical model in the range of low value of Ip/Ic (Ip and Ic are peak of the AC transport current and critical current of the tape respectively), while without DC background field, the loss of the tape was close to Norris' formula. Theoretically speaking, even with the DC background field and decreased critical current the AC transport current loss of the tape follows Norris' formula which is derived from the Bean model. When DC background field is applied to the HTS tape, n value of the power law EJ characteristics decreases together with the decrease of Jc. Dependence of the AC transport current loss on the n value was analyzed by numerical calculation. The results show that the loss depends on the n value and that decrease of the n value is one of the causes of the discrepancies between the measured data and Norris' formula.  相似文献   

15.
In the present study, α-NaCuPO4 compound was prepared by solid-state reaction method and characterized by X-ray powder diffraction and infrared spectroscopy. The AC electrical conductivity and dielectric relaxation properties of this compound have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures 209 Hz–1 MHz and 598–708 K, respectively. Both impedance and modulus analysis exhibit the grain and grain boundary contribution in the electrical response of the sample. It was found that the data of the AC measurements follow the overlapping large polaron tunneling model and the model’s parameters were determined.  相似文献   

16.
Polycrystalline samples of(Zn, Co) co-doped SnO2 nanoparticles were prepared using a co-precipitation method. The influence of(Zn, Co) co-doping on electrical, dielectric, and magnetic properties was studied. All of the(Zn, Co) co-doped SnO2 powder samples have the same tetragonal structure of SnO2. A decrease in the dielectric constant was observed with the increase of Co doping concentration. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with doping concentration and frequency. Magnetization measurements revealed that the Co doping SnO2 samples exhibits room temperature ferromagnetism. Our results illustrate that(Zn, Co) co-doped SnO2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those reported previously, indicating that these(Zn, Co) co-doped SnO2 materials can be used in the field of the ultrahigh dielectric material, high frequency device, and spintronics.  相似文献   

17.
该文介绍了用于探测线圈法测量超导材料交流损耗的一种交流超导磁体的设计、加工与绕制。超导磁体设计采用成熟的螺线管磁体技术,磁体骨架为低温环氧树脂加工而成,所用超导线为NbTi/Cu复合超导绞线。为了满足磁体的稳定性,每两层超导线间留出了一条冷却通道。所绕磁体的磁场强度和均匀度都满足设计要求。  相似文献   

18.
In a typical superconducting coil made of BSCCO/Ag tape, both amplitude and direction of the magnetic field determine the critical current, resistive voltage and AC loss. The distribution of the magnetic field along and across the superconducting tape in a coil is rather complex. This gives rise to the question: how accurate can one predict the critical current, VI characteristic and AC loss of the AC coil from results of short sample measurements? To answer this question, we have measured and compared the characteristics of a short sample and a small coil employing 14 m of the same tape at 77 K. The comparison is performed as follows. First, a short sample is characterised with regard to the field dependence of the critical current, VI characteristic and the AC loss. Second, the distribution of the magnetic field along the tape in a coil is accurately calculated. From the data, the voltage along the tape and the loss of the tape in the coil are found. Finally, the resistive voltage and the AC loss of the complete coil are calculated and compared to measured AC losses in the frequency range of 0 to 160 Hz, typical for power applications.  相似文献   

19.
Pure and ZnO and CdO added (separately) polycrystals of NaCl, KCl and (NaCl)0.5(KCl)0.5 were prepared by the melt method. Density, atomic absorption spectroscopic and X-ray diffraction measurements indicate that the ZnO and CdO have entered into the lattices of alkali halide crystals. The dielectric measurements indicate that the dielectric parameters increase with the increase in temperature. Also, the dielectric constant and dielectric loss factor values decreased whereas the electrical conductivities increased with the increase in frequency of the AC applied. Significant changes have been observed with the dielectric parameters caused by ZnO and CdO additions. Also, the depth profile study was carried out on CdO added crystals which indicates that the dopant addition creates different layers along the crystal with increase of dopant content from top to bottom.  相似文献   

20.
To replace conventional normal conducting solutions in electrotechnical devices, high-Tc superconductors must offer distinct economical and technical benefits in terms of lower overall loss, volume and weight. Based on AC loss theory we design appropriate 50 Hz reference conductors for cables, transformers and other applications, calculate admissible limits for the conductor variables filament diameter, twist and matrix resistance and compare this to the present state of Bi-2223-tape conductors and AC loss measurements. Further the influence of perpendicular AC field components on losses is addressed. High current devices will require multistrand conductors, where nonuniform current distribution due to unbalanced magnetic coupling may result in partial saturation and enhanced losses. As an example we discuss the multilayer HTSC-cable and present a solution based on a ‘zero flux condition' for azimuthal and axial magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号