首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes. For a laser with three active regions, a slope efficiency as high as 1.49 W/A, a vertical divergence angle of 17.4 , and a threshold current density of 271 A/cm 2 are achieved. By optimizing the structural parameters, the beam quality is greatly improved, and the level of the COD power increases by more than two times compared with that of the conventional laser.  相似文献   

2.
In many applications, it is important to know the waist of a laser beam. However, it is impossible to measure it directly because the intensity is high at the waist. We have used an optical fiber-scan system to characterize the Gauss/an intensity profile of a focused femtosecond laser beam. The measurement system employs a single-mode optical fiber that is fixed on a motorized three-dimensional translation stage to collect the laser energy and the other end is connected to an optical power meter to measure the intensity profile. Using the measure data and geometry formulas, one can calculate the beam waist and far-field divergence angle of a laser beam. The measured beam waist size is essentially consistent with the result of theoretical fit.  相似文献   

3.
Resonating properties of passive spherical optical microcavities   总被引:1,自引:0,他引:1  
As an optically pumped device, the lasing characteristics of a spherical microcavity laser depend on the optical pumping processes. These characteristics can be described in term of the Q factor and the optical field distribution in a microsphere. We derived analytical expressions and carried out numerical calculation for Q factor and optical field. The Q factor is found to be oscillatory functions of the radius of a microsphere and the pumping wavelength, and the pumping efficiency for a resonating microsphere is much higher than that for an anti-resonating microsphere. Using tunable lasers as pumping sources is suggested in order to achieve a higher pumping efficiency. Numerical calculation on optical field distribution in spherical microcavities shows that a well focused Gaussian beam is a suitable incident wave for cavity quantum electrodynamics experiments in which strong confinement of optical field in the center of a microsphere is requested, but higher order spherical wave should be used instead  相似文献   

4.
Novel transverse micro-stack semiconductor laser bars are put forward to improve the output optical power of semiconductor laser bars at low injection current. More importantly, the novel laser bars have a coupled large optical cavity, which can overcome the problem of catastrophic optical damage and improve light beam quality due to the coherently coupled emitting along the transverse direction. The micro-stack tunnel regeneration tri-active region laser structure was grown by metal organic chemical vapour deposition. For a weakly coupled uncoated device, the optical power exceeds 60 W under 50 A driving current and the slope efficiency reaches 1.55 W/A. Further experiments show that the perpendicular divergence of 23° is achieved from transverse strongly coupled devices.  相似文献   

5.
The laser beam divergence angle is one of the important parameters to evaluate the quality of the laser beam.It can not only accurately indicate the nature of the beam divergence when the laser beam is transmitted over a long distance,but also objectively evaluate the performance of the laser system.At present,lidar has received a lot of attention as a core component of environment awareness technology.Micro-electromechanical system(MEMS)micromirror has become the first choice for three-dimensional imaging lidar because of its small size and fast scanning speed.However,due to the small size of the MEMS micromirror,the lidar scanning system has a small field of view(FOV).In order to achieve a wide range of scanning imaging,collimating optical system and wide-angle optical system are generally added to the system.However,due to the inherent properties of the optical lens,it is impossible to perfect the imaging,so the effects of collimating and expanding the beam will be different at different angles.This article aims to propose a measurement system that dynamically measures the divergence angles of MEMS scanning lidar beams in different fields of view to objectively evaluate the performances of scanning lidar systems.  相似文献   

6.
High resolution lasers are necessary to derive the most information from molecular spectra. However, their use uncovers some photophysical processes that compromise the ability to resolve rotational structure. We study the influence of laser optical mode structure on the high resolution spectra of the S1 states of benzonitrile in a supersonic molecular beam using an Ar^+ pumped cw ring dye laser which is amplified by a pulsed Nd: YA G laser. The latter could be operated either in one optical mode by injecting (seeding) its oscillator with a single mode diode laser, or with many optical modes by not using the seeder. Rotationally resolved lines are obtained when the oscillator of the YAG laser are operated in one single optical mode, but only a continuum is seen when the YAG laser has multiple modes. It is argued that the ac Stark effect is the most probable reason for broadening and blurring the rotational lines.  相似文献   

7.
Three-dimensional optical matters are created by combining the single beam optical trapping with the conventional Z-scan technique. Dynamic light diffraction is employed to evaluate the structure and quality of the optical matter formed at the optimum trapping power. The lattice constant of the optical matter is extracted based on the Bragg and Snell laws, showing that polystyrene spheres are nearly close-packed in the optical matter, confirmed by comparing the diffraction pattern of the optical matter with that of a colloidal photonic crystal fabricated by the self-assembled technique. The relatively broad diffraction peaks observed in the optical matter indicate that the density of disorders in it is higher than that in the photonic crystal. It is suggested that the optical matter possesses a random close-packed structure rather than a face centered cubic one.Three-dimensional optical matters are created by combining the single beam optical trapping with the conven- tional Z-scan technique. Dynamic light diffraction is employed to evaluate the structure and quality of the optical matter formed at the optimum trapping power. The lattice constant of the optical matter is extracted based on the Bragg and Snell laws, showing that polystyrene spheres are nearly close-packed in the optical matter, confirmed by comparing the diffraction pattern of the optical matter with that of a colloidal photonic crystal fabricated by the self-assembled technique. The relatively broad diffraction peaks observed in the optical matter indicate that the density of disorders in it is higher than that in the photonic crystal. It is suggested that the optical matter possesses a random close-packed structure rather than a face centered cubic one.  相似文献   

8.
The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB305 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency. The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.  相似文献   

9.
This letter demonstrates an efficient high-power high-brightness 2-μm continuous-wave (CW) laser with double-end, diffusion-bonded Tm, Ho:YVO4 crystal cooled with liquid N2. The reduction in thermal stress in the composite Tm, Ho:YVO4 rod enabled the laser to achieve a laser output power of 23.4 W at 2.05 μm, which is 1.37 times higher than that of the non-composite Tm, Ho:YVO4 rod. The corresponding slope efficiency is 37.3% and the optical optical conversion efficiency is 35.4%. The beam quality M2 factor is about 1.85 at 20 W output level with circularly symmetric beam spot.  相似文献   

10.
The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented.An area-weighted average refractive index model is given to analyse their effective index profiles,and the graded index distribution in the holey region is demonstrated.The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth.Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser.Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes,the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution,but has a lower output power,higher threshold current and lower slope efficiency.With the hole number increased,the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range,and reduces the beam divergence further.The loss mechanism is used to explain the single-mode characteristic,and the reduced beam divergence is attributed to the shallow etching.High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.  相似文献   

11.
Tolerance on tilt error for coherent combining of fiber lasers   总被引:1,自引:0,他引:1  
Limited by the precision of optical machining and assembling, the optical axes of lasers in an array cannot be strictly parallel to each other, which will result in the beam quality degradation of the combined beam. The tolerance on tilt error for coherent combining of fiber lasers is studied in detail. The complex amplitude distribution in the far field for the Gaussian beam with tilt angle is obtained by a novel coordinate transform method. Effect of tilt error on coherent combining is modelled analytically. Beam propagation factor is used to evaluate the effect of coherent combining. Numerical results show that for ring-distributed fiber laser array with central wavelength A and geometry size D, if the root-mean-square (RMS) value of the tilt error is smaller than 0.72A/D, the energy encircled in the diffraction-limited bucket can be ensured to be more than 50% of the value when there is no tilt error. The results are helpful to the designing and manufacturing of fiber array for coherent combining.  相似文献   

12.
A new configuration of the confinement structure is utilized to improve optoelectronic performance, including threshold current, ac current gain, optical bandwidth, and optical output power of a single quantum well transistor laser. Considering the drift component in addition to the diffusion term in electron current density, a new continuity equation is developed to analyze the proposed structures. Physical parameters, including electron mobility, recombination lifetime, optical confinement factor, electron capture time, and photon lifetime, are calculated for new structures. Based on solving the continuity equation in separate confinement heterostructures, the threshold current reduces 67%, the optical output power increases 37%, and the-3 d B optical bandwidth increases to 21 GHz(compared to 19.5 GHz in the original structure) when the graded index layers of AlξGa1-ξAs(ξ:0.05 → 0 in the left side of quantum well, ξ:0 → 0.02 in the right side of quantum well) are used instead of uniform Ga As in the base region.  相似文献   

13.
韩伟  王芳  周丽丹  冯斌  贾怀庭  李恪宇  向勇  郑万国 《中国物理 B》2012,21(7):77901-077901
The influence of laser beam size on laser-induced damage performance, especially damage probability and the laser-induced damage threshold (LIDT), is investigated. It is found that damage probability is dependent on beam size when various damage precursors with different potential behaviors are involved. This causes the damage probability and the LIDT to be different between cases under a large-aperture beam and a small-aperture beam. Moreover, the fluence fluctuation of the large-aperture laser beam brings out hot spots, which move randomly across the beam from shot to shot. Thus this leads the most probable maximum fluence after many shots at any location on the optical component to be several times the average beam fluence. These two effects result in the difference in the damage performance of the optical component between the cases under a large-aperture and small-aperture laser.  相似文献   

14.
郭长志  陈水莲 《中国物理》1996,5(3):185-194
The mode density and cross-sectional area of whispering-gallery modes of various possible polarizations existing in a microdisk cavity structure have been investigated and compared in some detail. Their variations with the disk thickness and radius have been calculated and the behavior of the spontaneous emission factor controlled by the microdisk structure have been shown. It is found that for a given microdisk thickness, the spontaneous emission factor increases with decreasing microdisk radius, but decreases after passing a maximum value, This non-monotonic behavior has never been noted before by others. The variation of spontaneous emission factor with respect to microdisk thickness also exhibits similar behavior. For a microdisk laser emitting at 1.5 μm wavelength, the enhanced spontaneous emiasion factor can barely exceed 0.2. A device configuration for improving the coupling between the whispering-gallery mode and the active region, and for leading the laser beam out of this high-Q microcavity is proposad, and its feasibility in realizing a thresholdless laser is discussed.  相似文献   

15.
Usually the quantum fluctuation characteristic of a non-degenerate optical parametric amplifier is analysed under the assumption of monochromatic pumping. However, in experiments, a driving beam with finite bandwidth is used to obtain the non-degenerate signal and idler beam amplifications. On account of that, we derive an analytical solution for the non-degenerate optical parametric amplification system with finite bandwidth laser pumping, and evaluate the associated quantum fluctuation. Finally, the application of the V1 criterion to bipartite entanglement is discussed.  相似文献   

16.
靳晓民  章蓓  代涛  张国义 《中国物理 B》2008,17(4):1274-1279
We have investigated the transverse mode pattern and the optical field confinement factor of gallium nitride (GaN) laser diodes (LDs) theoretically. For the particular LD structure, composed of approximate 4 μm thick n-GaN substrate layer, the maximum optical confinement factor was found to be corresponding to the 5^th order transverse mode, the so-called lasing mode. Moreover, the value of the maximum confinement factor varies periodically when increasing the n-side GaN layer thickness, which simultaneously changes and increases the oscillation mode order of the GaN LD caused by the effects of mode coupling. The effects of the thickness and the average composition of Al in the AlGaN/GaN superlat.tice on the optical confinement factor are also presented. Finally, the mode coupling and optimization of the layers in the GaN-based LD are discussed.  相似文献   

17.
A diode pumped, Q-switched Nd:YAG zigzag slab laser is developed using passive conduction cooling. Flat-flat and unstable resonators are adopted in this experiment. The 150-mJ multi-mode and 100-mJ single-mode laser outputs with pulse width of 10 ns are achieved, corresponding to optical efficiencies of 19% and 13%, respectively. The experimental result demonstrates that the laser has the property of compact structure, high efficiency, reliability, and high beam quality. The design of laser has a potential application in space environment.  相似文献   

18.
周朴  刘泽金  许晓军  储修祥 《中国物理 B》2010,19(2):24205-024205
Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.  相似文献   

19.
A diode pumped,Q-switched Nd:YAG zigzag slab laser is developed using passive conduction cooling. Flat-flat and unstable resonators are adopted in this experiment.The 150-mJ multi-mode and 100-mJ single-mode laser outputs with pulse width of 10 ns are achieved,corresponding to optical efficiencies of 19% and 13%,respectively.The experimental result demonstrates that the laser has the property of compact structure,high efficiency,reliability,and high beam quality.The design of laser has a potential application in space environment.  相似文献   

20.
We firstly propose and demonstrate a new economical approach that can correct the wavefront of the petwatt Ti:sapphire laser system with a beam size of 150mm. By using a deformable mirror with 50mm active aperture in the end of the laser, the focal spot size is reduced effectively. The experimental results show that the new approach is simple, less-expensive and valid from a technical and economical point. This technique could be applied to correct the wavefront of a large optical beam with a smaller aperture deformable mirror.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号