首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-coated olivine-structured LiFePO4/C composites are synthesized via an efficient and low-cost carbothermal reduction method using Fe2O3 as iron source at a relative low temperature (600 °C). The effects of two kinds of carbon sources, inorganic (acetylene black) and organic (sucrose), on the structures, morphologies, and lithium storage properties of LiFePO4/C are evaluated in details. The particle size and distribution of the carbon-coated LiFePO4 from sucrose (LiFePO4/SUC) are more uniform than that obtained from acetylene black (LiFePO4/AB). Moreover, the LiFePO4/SUC nanocomposite shows superior electrochemical properties such as high discharge capacity of 156 mAh g?1 at 0.1 C, excellent cyclic stability, and rate capability (78 mAh g?1 at 20 C), as compared to LiFePO4/AB. Cyclic voltammetric test discloses that the Li-ion diffusion, the reversibility of lithium extraction/insertion, and electrical conductivity are significantly improved in LiFePO4/SUC composite. It is believed that olivine-structured LiFePO4 decorated with carbon from organic carbon source (sucrose) using Fe2O3 is a promising cathode for high-power lithium-ion batteries.  相似文献   

2.
LiFePO4/C nanocomposites are synthesized by a propylene oxide-assisted fast sol–gel method using FeCl3, LiNO3, NH4H2PO4, and sucrose as the starting materials. It was found that after adding propylene oxide into the solution containing the starting materials, a monolithic jelly-like FePO4 gel containing lithium and carbon source is generated in a few minutes without controlling the pH value of the solution and a time-consuming heating process. Propylene oxide plays a key role in the fast generation of the precursor gel. The final products of LiFePO4/C are obtained by sintering the dry precursor gel. The structures, micro-morphologies, and electrochemical properties of the LiFePO4/C composites are investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption–desorption analysis, electrochemical impedance spectrum, and charge–discharge cycling tests. The results indicate that the LiFePO4/C composite prepared by sintering the precursor gel at 680 °C for 5 h is about 30 nm in size with a meso-porous structure (the main pore size distribution is around 3.4 nm). It delivers 166.7 and 105.8 mAh g?1 at 0.2 and 30 C, respectively. The discharge specific capacity is 97.8 mAh g?1 even at 40 C. The cycling performance of the prepared LiFePO4/C composite is stable. The excellent electrochemical performance of the LiFePO4/C composite is attributed to the nano-sized and mesoporous structure of LiFePO4/C and the in-situ surface coating of the carbon. It was also found that propylene oxide is crucial for the generation of mesoporous and nano-structured LiFePO4/C.  相似文献   

3.
Submicron rod LiFePO4/C has been synthesized via a facile hydrothermal process. The morphology, crystal structure, and charge–discharge performance of the prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and galvanostatic charge–discharge testing. The SEM and TEM illustrate that submicron rods with a width of about 140 nm and a length of up to 400 nm have been obtained. The TEM test also indicates a “core–shell” structure with a 1.5–2 nm carbon shell on the LiFePO4 core. Even though the separate carbon-coated procedure is not used in this method, the electrochemical behavior results are satisfied. It displays that LiFePO4/C has highly crystalline and a desirable core–shell structure with uniform carbon film. Galvanostatic battery testing shows that LiFePO4/C delivers 104 mAh g?1 at 5 C rates. The highest specific capacity of 166 mAh g?1 is achieved at 0.1 C rate, and 99.8 % of the initial specific capacitance remained after 30 cycles.  相似文献   

4.
LiFePO4/C composite cathode material has been synthesized by a carbothermal reduction method using β-FeOOH nanorods as raw materials and glucose as both reducing agent and carbon source. The results indicate that the content of carbon and the morphology of raw material have effect on the electrochemical performance of the final LiFePO4/C material. Sample LFP14 with a carbon content of 2.79 wt.% can deliver discharge capacities of 158.8, 144.3, 111.0, and 92.9 mAh g?1 at 0.1, 1, 10, and 15 C, respectively. When decreasing the current from 15 C back to 0.1 C, a discharge capacity of 157.5 mAh g?1 is recovered, which is 99.2 % of its initial capacity. Therefore, as a kind of cathode material for lithium ion batteries, this LiFePO4/C material synthesized via a carbothermal reduction method is promising in large-scale production, and has potential application in upcoming hybrid electric vehicles or electric vehicles.  相似文献   

5.
LiFePO4/C active materials were synthesized via a modified carbothermal method, with a low raw material cost and comparatively simple synthesis process. Rheological phase technology was introduced to synthesize the precursor, which effectively decreased the calcination temperature and time. The LiFePO4/C composite synthesized at 700 °C for 12 h exhibited an optimal performance, with a specific capacity about 130 mAh g?1 at 0.2C, and 70 mAh g?1 at 20C, respectively. It also showed an excellent capacity retention ratio of 96 % after 30 times charge–discharge cycles at 20C. EIS was applied to further analyze the effect of the synthesis process parameters. The as-synthesized LiFePO4/C composite exhibited better high-rate performance as compared to the commercial LiFePO4 product, which implied that the as-synthesized LiFePO4/C composite was a promising candidate used in the batteries for applications in EVs and HEVs.  相似文献   

6.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

7.
The carbon microtubules core structure LiFePO4 is synthesized using a cotton fiber template-assisted method. The crystalline structure and morphology of the product is characterized by X-ray diffraction and field emission scanning electron microscopy. The charge–discharge kinetics of the LiFePO4 electrode is investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The result shows that the well-crystallized carbon microtubules core structure LiFePO4 is successfully synthesized. The as-synthesized material exhibits a high initial discharge capacity of 167 mAh g?1 at 0.2 C rate. The material also shows good high-rate discharge performance and cycling stability, about 127 mAh g?1 and 94.7 % capacity retention after 100 cycles even at 5.0 C rate.  相似文献   

8.
LiFePO4/C surface modified with Li3V2(PO4)3 is prepared with a sol–gel combustion method. The structure and electrochemical behavior of the material are studied using a wide range of techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. It is found that LiFePO4/C surface modified with Li3V2(PO4)3 has the better electrochemical performance. The discharge capacity of the as-prepared material can reach up to 153.1, 137.7, 113.6, and 93.3 mAh g?1 at 1, 2, 5, and 10 C, respectively. The capacitance of the LiFePO4/C modified by Li3V2(PO4)3 is higher under lower discharging rate at ?20 °C, and the initial discharge capacity of 0.2 C is 131.4 mAh g?1. It is also demonstrated that the presence of Li3V2(PO4)3 in the sample can reduce the charge transfer resistance in the range of ?20 to 25 °C, resulting in the enhanced electrochemical catalytic activity.  相似文献   

9.
LiFePO4/C was prepared by wet milling-assisted spray drying. The effects of ball-milling time on the characteristics of LiFePO4/C were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, cyclic voltammograms, electrochemical impedance spectra, and galvanostatic charge–discharge testing. Bowl-like material was obtained, surrounded by a network of carbon, which display larger specific surface area. The specific surface area of particle first increased and then decreased, as the increasing of ball-milling time; when ball-milling time reach 2.5 h, it showed the largest specific surface area of 29.350 m2 g?1, primary particles with size of ~50 nm, delivered a discharge capacity of 162 mAh g?1 at 0.5 C and 123 mAh g?1 at 10 C, and with no capacity loss.  相似文献   

10.
Nitrogen-doped carbon nanofiber (NCNF) decorated LiFePO4 (LFP) composites are synthesized via an in situ hydrothermal growth method. Electrochemical performance results show that the embedded NCNF can improve electron and ion transfer, thereby resulting in excellent cycling performance. The as-prepared LFP and NCNF composites exhibit excellent electrochemical properties with discharge capacities of 188.9 mAh g?1 (at 0.2 C) maintained at 167.9 mAh g?1 even after 200 charge/discharge cycles. The electrode also presents a good rate capability of 10 C and a reversible specific capacity as high as 95.7 mAh g?1. LFP composites are a potential alternative high-performing anode material for lithium ion batteries.  相似文献   

11.
Fuwei Mao  Dongchen Wu  Zhufa Zhou  Shumei Wang 《Ionics》2014,20(12):1665-1669
In this study, LiFe1???3x/2Bi x PO4/C cathode material was synthesized by sol–gel method. From XRD patterns, it was found that the Bi-doped LiFePO4/C cathode material had the same olivine structure with LiFePO4/C. SEM studies revealed that Bi doping can effectively decrease the particle sizes. It shortened Li+ diffusion distance between LiFePO4 phase and FePO4 phase. The LiFe0.94Bi0.04PO4/C powder exhibited a specific initial discharge capacity of about 149.6 mAh g?1 at 0.1 rate as compared to 123.5 mAh g?1 of LiFePO4/C. EIS results indicated that the charge-transfer resistance of LiFePO4/C decreased greatly after Bi doping.  相似文献   

12.
High molecular weight polymer poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI), and salt lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-based free-standing and conducting ionic liquid-based gel polymer electrolytes (ILGPE) have been prepared by solution cast method. Thermal, electrical, and electrochemical properties of 80 wt% IL containing gel polymer electrolyte (GPE) are investigated by thermogravimetric (TGA), impedance spectroscopy, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). The 80 wt% IL containing GPE shows good thermal stability (~?200 °C), ionic conductivity (6.42?×?10?4 S cm?1), lithium ion conductivity (1.40?×?10?4 S cm?1 at 30 °C), and wide electrochemical stability window (~?4.10 V versus Li/Li+ at 30 °C). Furthermore, the surface of LiFePO4 cathode material was modified by graphene oxide, with smooth and uniform coating layer, as confirmed by scanning electron microscopy (SEM), and with element content, as confirmed by energy dispersive X-ray (EDX) spectrum. The graphene oxide-coated LiFePO4 cathode shows improved electrochemical performance with a good charge-discharge capacity and cyclic stability up to 50 cycles at 1C rate, as compared with the without coated LiFePO4. At 30 °C, the discharge capacity reaches a maximum value of 104.50 and 95.0 mAh g?1 for graphene oxide-coated LiFePO4 and without coated LiFePO4 at 1C rate respectively. These results indicated improved electrochemical performance of pristine LiFePO4 cathode after coating with graphene oxide.  相似文献   

13.
Hierarchical Fe5(PO4)4(OH)3·2H2O microflower was synthesized by a hydrothermal reaction with self-prepared β-FeOOH nanorod as raw material. The microflowers were self-assemblies of symmetric building blocks with deep grooves. The possible morphology evolution process was proposed. The microflowers morphology was retained when they were lithiated to prepare LiFePO4/C composites through a carbothermal reduction method with citric acid as both reducing agent and carbonaceous coating conductor source. As cathode materials for lithium ion batteries, the as-obtained LiFePO4/C composites deliver a high discharge capacity of 156 mAh g?1 at 0.1 C rate and exhibit excellent cycling stability, which may be ascribed to the homogeneous coated carbon and the unique microflower structure with grooves.  相似文献   

14.
Yan Lin  Jianbo Wu  Weiping Chen 《Ionics》2013,19(2):227-234
LiFePO4/C was prepared by a modified aqueous sol–gel route developed by incorporating an additional ball-milling step where the dry gel was milled with the additives of synthetic graphite and carbon black. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), high resolution TEM (HRTEM) and elemental analysis. Results showed that the LiFePO4/C synthesized by suitable ball-milling process had pure, fine and homogenous LiFePO4 particles. Results of cyclic voltammetry and charge/discharge plateaus demonstrated that the LiFePO4/C composite synthesized by milling for 2 h had much better electrochemical kinetics. High performances were achieved with its discharge capacities of 157 mA h g?1 at 0.1?C and 133 mA h g?1 at 1?C between 2.5 and 4.2 V (1?C?=?170 mA g?1). And no obvious capacity fading was observed upon cycling. The simple and convenient synthesis route is promising for large-scale production of LiFePO4/C.  相似文献   

15.
A high specific surface area (2798.8 m2 g?1) of nanoporous carbon microsphere (NPCM) is prepared by activated carbon microsphere in hot CO2 atmosphere, which is used as matrix material of sulfur to prepare NPCM/sulfur composite cathode material by a melt-diffusion method. The NPCM/sulfur composite cathode material with the sulfur content of 53.5% shows high discharge capacity; the initial discharge capacity is 1274 mAh g?1 which maintains as high as 776.4 mAh g?1 after 50 cycles at 0.1 C current. At high current density of 1 C, the NPCM/sulfur cathode material still shows initial discharge capacity of 830.3 mAh g?1, and the reversible capacity retention is 78% after 50 cycles. To study the influence of different sulfur content of NPCM/sulfur cathode material to the performance of Li–S battery, the different sulfur content of NPCM/sulfur composite cathode materials is prepared by changing the thermal diffusion time and the ratio of sulfur powder to NPCM. The performance of NPCM/sulfur cathode material with different sulfur content is studied at a current of 0.1 C, which will be very important to the preparation of high-performance sulfur/carbon cathode material with appropriate sulfur content.  相似文献   

16.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

17.
The poor electronic conductivity and low lithium-ion diffusion are the two major obstacles to the largely commercial application of LiFePO4 cathode material in power batteries. In order to improve the defects of LiFePO4, a novel carbon source polyacrylonitrile (PAN), which would form the hierarchical porous structure after carbonization, is fabricated and used. This work comes up with a simple and facile carbothermal reduction method to prepare porous-carbon-coated LiFePO4 (C-LiFePO4-PC) composite and to study the effect of carbon-coated temperature on ameliorating the electrochemical performance. The obtained C-LiFePO4-PC composite shows a high initial discharge capacity of 164.1 mA h g?1 at 0.1 C and good cycling stability as well as excellent rate capacity (49.0 mA h g?1 at 50 C). The most possible factors that improve the electrochemical performance could be related to the enhancement of electronic conductivity and the existence of porous carbon layers. In a word, the C-LiFePO4-PC material would become an excellent candidate for application in the fields of lithium-ion batteries.  相似文献   

18.
Carbon encapsulated Li4Ti5O12 (C/Li4Ti5O12) anode material for lithium ion battery was prepared by using the pre-coat method of two steps, and the TiO2 was pre coated before the reaction with Li2CO3. The structure and morphology of the resultant C/Li4Ti5O12 materials were characterized by X-ray diffraction (XRD) and scanning microscopy (SEM). Electrochemical tests showed that at 0.1 C, the initial discharge capacity was 169.9 mAh g?1, and the discharge capacity was 80 mAh g?1 at 5 C. After 100 cycles at 2 C, the discharge specific capacity was 108.5 mAh g?1. Compare with one step coating method, results showed the C/Li4Ti5O12 prepared by pre-coat method can reduce the particle’s size and effectively improve the electrochemical performance.  相似文献   

19.
An improved solid-state reaction route has been employed to synthesize Mg2+-doped LiFePO4/C nanocomposite cathode by calcining the precursor obtained via evaporating the mixture of ascorbic acid, LiCH3COO·2H2O, Mg(CH3COO)2·4H2O, and amorphous FePO4 nanoparticles in anhydrous ethanol under continuous stirring. Ascorbic acid used here acted as both reducing agent and carbon source. The amorphous FePO4 was pre-prepared via a simple and fast oxidic precipitation method. Electrochemical tests showed that the final product exhibited good rate and cycling performance, with discharge capacities of 145.2 mAh g?1 at 0.2 C, 129.8 mAh g?1 at 1 C, 107.6mAh g?1 at 5 C, and 81.4 mAh g?1 at 20 C, respectively. The Mg2+-doped LiFePO4/C showed enhanced charge–discharge performance compared with undoped LiFePO4/C, especially at high rates. The enhanced electrochemical performance of the composite could be attributed to a combination result of the fine particle size with narrow particle size distribution, homogeneous carbon coating on the surface of the particles, and magnesium ion doping.  相似文献   

20.
Mg-doping effects on the electrochemical property of LiFePO4–Li3V2(PO4)3 composite materials, a mutual-doping system, are investigated. X-ray diffraction study indicates that Mg doping decreases the cell volume of LiFePO4 in the composite. The cyclic voltammograms reveal that the reversibility of the electrode reaction and the diffusion of lithium ion is enhanced by Mg doping. Mg doping also improves the conductivity and rate capacity of 7LiFePO4–Li3V2(PO4)3 composite material and decreases the polarization of the electrode reaction. The discharge capacity of the Mg-doped composite was 93 mAh?g?1 at the current density of 1,500 mA?g?1, and Mg-doped composite has better discharge performance than the original 7LiFePO4–Li3V2(PO4)3 composite at low temperature, too. At ?30 °C, the discharge capacity of Mg-doped LFVP is 89 mAh?g?1, higher than that of the original composite. Electrochemical impedance spectroscopy study shows that Mg2+ doping could enhance the electrochemical activity of 7LiFePO4–Li3V2(PO4)3 composite. Mg doping has a positive influence on the electrochemical performance of the LiFePO4–Li3V2(PO4)3 composite material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号