首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mg-doping effects on the electrochemical property of LiFePO4–Li3V2(PO4)3 composite materials, a mutual-doping system, are investigated. X-ray diffraction study indicates that Mg doping decreases the cell volume of LiFePO4 in the composite. The cyclic voltammograms reveal that the reversibility of the electrode reaction and the diffusion of lithium ion is enhanced by Mg doping. Mg doping also improves the conductivity and rate capacity of 7LiFePO4–Li3V2(PO4)3 composite material and decreases the polarization of the electrode reaction. The discharge capacity of the Mg-doped composite was 93 mAh?g?1 at the current density of 1,500 mA?g?1, and Mg-doped composite has better discharge performance than the original 7LiFePO4–Li3V2(PO4)3 composite at low temperature, too. At ?30 °C, the discharge capacity of Mg-doped LFVP is 89 mAh?g?1, higher than that of the original composite. Electrochemical impedance spectroscopy study shows that Mg2+ doping could enhance the electrochemical activity of 7LiFePO4–Li3V2(PO4)3 composite. Mg doping has a positive influence on the electrochemical performance of the LiFePO4–Li3V2(PO4)3 composite material.  相似文献   

2.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

3.
A rheological phase-assisted ball milling method was developed to synthesize of flower-like Li3V2(PO4)3/C composites consisting of nanofibers and nanoplate porous microstructure. The flower-like Li3V2(PO4)3/C composite delivered specific capacities of 120 and 108 mAh g?1 at 0.5 and 10 C rates, respectively. A capacity retention of 99.5 % was sustained after 100 cycles at a 10-C cycling rate. The remarkable performance was attributed to the porous nanostructures that provide short electron/ion diffusion distance and large electrode/electrolyte contact area.  相似文献   

4.
The Li3V2(PO4)3/C (LVP/C) cathode materials for lithium-ion batteries were synthesized via ethylene glycol-assisted solvothermal method. The phase composition, phase transition temperature, morphology, and fined microstructure were studied using X-ray diffraction (XRD), differential thermal analyzer (DTA), scanning electron microscope (SEM), and transmission electron microscope (TEM), respectively. The electrochemical properties, impedance, and electrical conductivity of LVP/C cathode materials were tested by channel battery analyzer, the electrochemical workstation, and the Hall test system, respectively. The results shown that the appropriate amount of water added to ethylene glycol solvent contributes to the synthesis of pure phase LVP. The LVP10/C cathode material can exhibit discharge capacities of 128, 126, 126, 123, 124, and 114 mAh g?1 at 0.1, 0.5, 2, 5, 10, and 20 C in the voltage range of 3.0–4.3 V, respectively. Meanwhile, it shows also a stable cycling performance with the capacity retention of 89.6% after 180 cycles at 20 C.  相似文献   

5.
The olivine-type LiFe1-x Y x PO4/C (x?=?0, 0.01, 0.02, 0.03, 0.04, 0.05) products were prepared through liquid-phase precipitation reaction combined with the high-temperature solid-state method. The structure, morphology, and electrochemical performance of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy-dispersive spectroscopy (EDS), galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). We found that the small amount of Y3+ ion-doped can keep the microstructure of LiFePO4, modify the particle morphology, decrease charge transfer resistance, and enhance exchange current density, thus enhance the electrochemical performance of the LiFePO4/C. However, the large doping content of Y3+ ion cannot be completely doped into LiFePO4 lattice, but existing partly in the form of YPO4. The electrochemical performance of LiFePO4/C was restricted owing to YPO4. Among all the doped samples, LiFe0.98Y0.02PO4/C showed the best electrochemical performance. The LiFe0.98Y0.02PO4/C sample exhibited the initial discharge capacity of 166.7, 155.8, 148.2, 139.8, and 121.1 mAh g?1 at a rate of 0.2, 0.5, 1, 2, and 5 C, respectively. And, the discharge capacity of the material was 119.6 mAh g?1 after 100 cycles at 5 C rates.  相似文献   

6.
Aifang Liu 《Ionics》2014,20(4):451-458
A series of Li3V2(PO4)3/C (LVP/C) samples with monoclinic structure indexed to P21/n space group were synthesized using V2O3 as vanadium source by solid state reaction method by different sintering temperatures. It was found that the LVP/C sintered at 750 °C with a carbon content 3 wt.% was the optimum condition for this synthesis. The structural, morphological, superficial, and textural properties of LVP/C were characterized by XRD, SEM, TEM, and XPS. The electrochemical performance was evaluated by galvanostatic charge–discharge cycling using new high voltage electrolyte. The optimized cell delivered an initial discharge capacity of 187 mAh g?1 in the higher cut-off voltage of 3.0–4.8 V vs. Li+/Li0 at 0.2 C rate, with a capacity retention of 88 %, 89 %, and 61 % after 50 cycles discharging at 1 C, 2 C, and 4 C, respectively. The capacity can be almost recovered at 0.5 C after long cycles. The excellent stability is contributed to the new high-voltage electrolyte.  相似文献   

7.
Fuwei Mao  Dongchen Wu  Zhufa Zhou  Shumei Wang 《Ionics》2014,20(12):1665-1669
In this study, LiFe1???3x/2Bi x PO4/C cathode material was synthesized by sol–gel method. From XRD patterns, it was found that the Bi-doped LiFePO4/C cathode material had the same olivine structure with LiFePO4/C. SEM studies revealed that Bi doping can effectively decrease the particle sizes. It shortened Li+ diffusion distance between LiFePO4 phase and FePO4 phase. The LiFe0.94Bi0.04PO4/C powder exhibited a specific initial discharge capacity of about 149.6 mAh g?1 at 0.1 rate as compared to 123.5 mAh g?1 of LiFePO4/C. EIS results indicated that the charge-transfer resistance of LiFePO4/C decreased greatly after Bi doping.  相似文献   

8.
5LiFePO4⋅Li3V2(PO4)3/C composite cathode material is synthesized by a polyethylene glycol (PEG)-assisted rheological phase method. As a surfactant and dispersing agent, PEG can effectively inhabit the aggregation of colloidal particles during the formation of the gel. Meanwhile, PEG will coat on the particles to play the role of carbon source during the sintering. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy, and electrochemical methods. XRD results indicate that the 5LiFePO4⋅Li3V2(PO4)3/C composites are well crystallized and contain olivine-type LiFePO4 and monoclinic Li3V2(PO4)3 phases. The composite synthesized at 650 °C exhibits the initial discharge capacities of 134.8 and 129.9 mAh g−1 and the capacity retentions of 96.2 and 97.1 % after 50 cycles at 1C and 2C rates, respectively.  相似文献   

9.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

10.
Xiangfeng Li  Xin Zhang  Zhao Zhang 《Ionics》2014,20(9):1275-1283
The LiFePO4/C composite with a grape bunch structure was synthesized through the hydrothermal method at 170 °C for 7 h and followed by being fired at 750 °C for 4 h. Commercial Li2CO3, (NH4)2Fe(SO4)2?·?6H2O, and (NH4)2HPO4 were used as raw materials. Glucose was used as in situ coating carbon source, and the hydroxylated MWCNTs were used as connecting carbon wires which could be embedded into the carbon coating to form a uniform grape bunch structure. The resultant samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), elementary analysis (EA), Raman spectroscopy, and electrochemical tests. The results show that the grape bunch structure with a low disordered/graphene (D/G) ratio was found to be well dispersed in the LiFePO4/C composite, and a three-dimensional carbonaceous network was formed which could enhance the electronic conductivity of the LiFePO4/C composite remarkably. The resultant LiFePO4/C composite shows a high discharge capacity of 160.3 mAh g?1 at 0.1 C and 110.9 mAh g?1 even at 10 C, and the cycling capacity retention rate reaches 99.6 % over 60 cycles. Besides, it also exhibits high conductivity, good reversibility, and excellent stability in EIS and CV tests.  相似文献   

11.
To improve the performance of LiFePO4, LiFe1?x Mo x PO4/C (x?=?0, 0.005, 0.010, 0.015, 0.020, 0.025) cathode materials were synthesized via two-step ball milling solid-state reaction. The prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectra, and galvanostatic charge–discharge test. It is apparent from XRD analysis that Mo doping enlarges the interplanar distance of crystal plane parallel to [010] direction in LiFePO4. In other words, it widens one-dimensional diffusion channels of Li+ along the [010] direction. The results of electrochemical test indicate that the LiFe0.99Mo0.01PO4/C composite exhibits a discharge capacity of 144.8 mAh g?1 at 1 C rate, a decreased charge transfer resistance of 162.4 Ω and better reversibility of electrode reactions. The present synthesis route is promising and practical for the preparation of LiFePO4 materials.  相似文献   

12.
The carbon microtubules core structure LiFePO4 is synthesized using a cotton fiber template-assisted method. The crystalline structure and morphology of the product is characterized by X-ray diffraction and field emission scanning electron microscopy. The charge–discharge kinetics of the LiFePO4 electrode is investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The result shows that the well-crystallized carbon microtubules core structure LiFePO4 is successfully synthesized. The as-synthesized material exhibits a high initial discharge capacity of 167 mAh g?1 at 0.2 C rate. The material also shows good high-rate discharge performance and cycling stability, about 127 mAh g?1 and 94.7 % capacity retention after 100 cycles even at 5.0 C rate.  相似文献   

13.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

14.
Carbon encapsulated Li4Ti5O12 (C/Li4Ti5O12) anode material for lithium ion battery was prepared by using the pre-coat method of two steps, and the TiO2 was pre coated before the reaction with Li2CO3. The structure and morphology of the resultant C/Li4Ti5O12 materials were characterized by X-ray diffraction (XRD) and scanning microscopy (SEM). Electrochemical tests showed that at 0.1 C, the initial discharge capacity was 169.9 mAh g?1, and the discharge capacity was 80 mAh g?1 at 5 C. After 100 cycles at 2 C, the discharge specific capacity was 108.5 mAh g?1. Compare with one step coating method, results showed the C/Li4Ti5O12 prepared by pre-coat method can reduce the particle’s size and effectively improve the electrochemical performance.  相似文献   

15.
G. Yang  C. Y. Jiang  X. M. He  J. R. Ying  J. Gao 《Ionics》2013,19(9):1247-1253
A novel process was attempted for synthesis of Li3V2 (PO4)3/LiFePO4 composite cathode material via loading nano-LiFePO4 (LFP) powders onto the outside of micrometer-size spherical Li3V2 (PO4)3 (LVP). The precursor of nano-LFP and LVP were synthesized via “controlled crystallization” and “spray drying” techniques, respectively. The X-ray diffraction characterization, scanning electron microscopy, and electrochemical performance measurements were studied. The results indicated that the prepared Li3V2(PO4)3/LiFePO4 (LVP/LFP) composite material exhibited better discharging capacity at high C rate and at low temperature than that of LFP and bulk LVP/LFP. This can pave an effective way to improve the performance of LFP at high C rate and at low temperature.  相似文献   

16.
LiFePO4/C nanocomposites are synthesized by a propylene oxide-assisted fast sol–gel method using FeCl3, LiNO3, NH4H2PO4, and sucrose as the starting materials. It was found that after adding propylene oxide into the solution containing the starting materials, a monolithic jelly-like FePO4 gel containing lithium and carbon source is generated in a few minutes without controlling the pH value of the solution and a time-consuming heating process. Propylene oxide plays a key role in the fast generation of the precursor gel. The final products of LiFePO4/C are obtained by sintering the dry precursor gel. The structures, micro-morphologies, and electrochemical properties of the LiFePO4/C composites are investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption–desorption analysis, electrochemical impedance spectrum, and charge–discharge cycling tests. The results indicate that the LiFePO4/C composite prepared by sintering the precursor gel at 680 °C for 5 h is about 30 nm in size with a meso-porous structure (the main pore size distribution is around 3.4 nm). It delivers 166.7 and 105.8 mAh g?1 at 0.2 and 30 C, respectively. The discharge specific capacity is 97.8 mAh g?1 even at 40 C. The cycling performance of the prepared LiFePO4/C composite is stable. The excellent electrochemical performance of the LiFePO4/C composite is attributed to the nano-sized and mesoporous structure of LiFePO4/C and the in-situ surface coating of the carbon. It was also found that propylene oxide is crucial for the generation of mesoporous and nano-structured LiFePO4/C.  相似文献   

17.
The Li3V2(PO4)3/reduced graphene oxide (LVP/rGO) composite is successfully synthesized by a conventional solid-state reaction with a high yield of 10 g, which is suitable for large-scale production. Its structure and physicochemical properties are investigated using X-ray diffraction, Raman spectra, field-emission scanning electron microscopy, transmission electron microscopy, and electrochemical methods. The rGO content is as low as ~3 wt%, and LVP particles are strongly adhered to the surface of the rGO layer and/or enwrapped into the rGO sheets, which can facilitate the fast charge transfer within the whole electrode and to the current collector. The galvanostatic charge–discharge tests show that the LVP/rGO electrode delivers an initial discharge capacity of 177 mAh g?1 at 0.5 C with capacity retention of 88 % during the 50th cycle in a wide voltage range of 3.0–4.8 V. A superior rate capability is also achieved, e.g., exhibiting discharge capacities of 137 and 117 mAh g?1 during the 50th cycle at high C rates of 2 and 5 C, respectively.  相似文献   

18.
Wei Yuan  Ji Yan  Zhiyuan Tang  Li Ma 《Ionics》2012,18(3):329-335
A novel ultrasonic-assisted sol–gel method is proposed to prepare Li3V2(PO4)3/C cathode material. X-ray diffraction analyses show that both Li3V2(PO4)3/C(A) synthesized by the ultrasonic-assisted sol–gel method and Li3V2(PO4)3/C(B) synthesized by a traditional sol–gel method have monoclinic structure. Scanning electron microscopy images indicate that the Li3V2(PO4)3/C(A) composite has a more uniform morphology than that of the Li3V2(PO4)3/C(B) composite. In the voltage range of 3.0–4.3 V (vs. Li/Li+), the initial specific discharge capacities of the Li3V2(PO4)3/C(A) and Li3V2(PO4)3/C(B) samples are 129.8 and 125.9 mAh g−1 at 1C rate (1C = 133 mA g−1), respectively. Furthermore, at 2-C charge/10-C discharge rate, the specific discharge capacity of the Li3V2(PO4)3/C(A) composite retains 113.2 mAh g−1 after 50 cycles, but the Li3V2(PO4)3/C(B) composite only presents a capacity of 94.8 mAh g−1.  相似文献   

19.
Li3V2(PO4)3/C samples were synthesized by two different synthesis methods. Their influence on electrochemical performances of Li3V2(PO4)3/C as cathode materials for lithium-ion batteries was investigated. The structure and morphology of Li3V2(PO4)3/C samples were characterized by X-ray diffraction and scanning electron microscopy. Electrochemical performance was characterized by charge/discharge, cyclic voltammetry, and alternating current (AC) impedance measurements. Li3V2(PO4)3/C with smaller grain size showed better performances in terms of the discharge capacity and cycle stability. The improved electrochemical properties of the Li3V2(PO4)3/C were attributed to the decreasing grain size and enhanced electrical conductivity produced via low temperature route. AC impedance measurements also showed that the Li3V2(PO4)3/C synthesized by low temperature route significantly decreased the charge-transfer resistance and shortened the migration distance of lithium ion.  相似文献   

20.
Qun Wu  Yanhui Xu  Hua Ju 《Ionics》2013,19(3):471-475
In the present work, a new-type low-cost lithium ion battery cathode material, the Mikasaite-type iron sulfate, has been studied. It can be prepared by heating the water-containing iron sulfate raw chemicals in air atmosphere. The experimental results have shown that the oxidation and the reduction peaks are 3.92 and 3.37 V in the cyclic voltammogram, respectively, when the scanning rate is 0.05 mV s?1. The galvanostatic measurements have explored that the voltage plateau during charging is slightly less than 3.70 V and the discharge voltage plateau is 3.40 V for the first cycle and 3.50 V for the following cycles at 0.1 C rate. The discharge capacity in the first cycle can reach 116 mAh g?1, about 87 % of the theoretical capacity (134 mAh g?1). It is believed that the product in the fully discharged state is Li2Fe2(SO4)3. However, the insertion reaction is reversible only for the second lithium ion. During cycling, the reversible capacity remains about 60 mAh g?1. Further capacity fade is not found in the 20 discharge–charge cycles. The electrochemical impedance measurements have shown that there are two compressed semicircles in the Nyquist plots and a Warburg impedance in the low-frequency domain. The high-frequency semicircle is related with the electrode’s structural factor and the intermediate-frequency semicircle corresponds to the charge-transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号