首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
化学   5篇
物理学   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
采用基于密度泛函理论的第一性原理方法, 计算了不同Mn掺杂浓度LiFe1-xMnxPO4 (x=0,0.25,0.50,0.75) 的电子结构. 同时采用流变相辅助高温固相碳热还原法制备了LiFe1-xMnxPO4 (x= 0,0.25,0.50,0.75) 材料. 理论计算表明: LiFePO4具有Eg = 0.725 eV的带隙宽度, 为半导体材料. 通过Fe位掺杂25%的Mn离子可最大程度地 减小材料带隙宽度、降低Fe---O键及Li---O键键能, 进而提高材料的电子电导率及锂离子扩散速率. 实验结果亦表明, 当Mn掺杂量x=0.25时, 材料具有最优的电化学性能, 其具有约为158 mAh· g-1的放电比容量以及551 Wh· kg-1的能量密度. 理论计算与实验结果非常符合.  相似文献   
2.
LiFePO4/C composite cathode material is prepared by ball milling with the assistance of EDTA chelation with using water as the media of ball mill procedure. FePO4 and LiOH are used as starting materials; a certain amount of glucose is used as carbon sources and reduction agent. The structure and morphology of the composite are characterized by X-ray diffraction and scanning electron microscopy. Cyclic voltammetry, AC impedance measurements, and galvanostatic charge–discharge and cycling performances are used to characterize its electrochemical properties. The results indicate that the performances of composites prepared by chelation-assisted method are much better than common ball milling method which using alcohol or acetone as the media of ball mill procedure. The stable discharge capacity of the prepared composite is 150 and 105 mAh g−1 at 1 and 10 C rate, respectively.  相似文献   
3.
The carbon microtubules core structure LiFePO4 is synthesized using a cotton fiber template-assisted method. The crystalline structure and morphology of the product is characterized by X-ray diffraction and field emission scanning electron microscopy. The charge–discharge kinetics of the LiFePO4 electrode is investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The result shows that the well-crystallized carbon microtubules core structure LiFePO4 is successfully synthesized. The as-synthesized material exhibits a high initial discharge capacity of 167 mAh g?1 at 0.2 C rate. The material also shows good high-rate discharge performance and cycling stability, about 127 mAh g?1 and 94.7 % capacity retention after 100 cycles even at 5.0 C rate.  相似文献   
4.
Although the diameter of conductive polymer nanoparticles can be controlled effectively, the uniformity of particle length is still very challenging. In this study, with the temperature‐sensitive block copolymer PS111b‐PNIPAM114 as the template, the morphology and size of polyaniline (PANI) particles had been controllably adjusted through the change of temperature. Additionally, the electrochemical performance of each sample was investigated. After PS111b‐PNIPAM114 was synthesized through the reversible addition‐fragmentation chain transfer radical polymerization (RAFT), with its vesicular micelle as the “template”, the PANI particles with uniform length distribution were prepared successfully at 40°C. The average length of PANI particles after template removal was 254.07 nm with a short tail distribution, which was closer to the average than the standard normal distribution. Electrochemical results of PANI showed that it had good electrochemical activity with fast charge and discharge ability. And, with the current density of 1 A·g?1, its discharge‐specific capacitance could reach up to 805.61 F·g?1.  相似文献   
5.
The electrochemical performance of Li3V2(PO4)3/C was investigated at various low temperatures in the electrolyte 1.0 mol dm−3 LiPF6/ethyl carbonate (EC)+diethyl carbonate (DEC)+dimethyl carbonate (DMC) (volume ratio 1:1:1). The stable specific discharge capacity is 125.4, 122.6, 119.3, 116.6, 111.4, and 105.7 mAh g−1 at 26, 10, 0, −10, −20, and −30 °C, respectively, in the voltage range of 2.3–4.5 V at 0.2 C rate. When the temperature decreases from −30 to −40 °C, there is a rapid decline in the capacity from 105.7 to 69.5 mAh g−1, implying that there is a nonlinear relationship between the performance and temperature. With temperature decreasing, R ct (corresponding to charge transfer resistance) increases rapidly, D (the lithium ion diffusion coefficients) decreases sharply, and the performance of electrolyte degenerates obviously, illustrating that the low-temperature electrochemical performance of Li3V2(PO4)3/C is mainly limited by R ct, D Li, and electrolyte.  相似文献   
6.
为检测食品变质过程中产生的乙二胺气体,采用Alder法合成了四苯基卟啉和四苯基卟啉铁化合物,通过核磁(~1H NMR)、场发射扫描电子显微镜(FE-SEM)、红外光谱(IR)、紫外可见光谱(UV-Vis)等手段对其进行表征,并以四苯基卟啉铁作为敏感试剂,利用旋涂法制备了四苯基卟啉铁薄膜/K+交换玻璃光波导传感元件,对多种气体进行检测。结果表明:该传感元件对乙二胺气体具有较好的选择性响应,较高的灵敏度,在1×10~(-10)~1×10~(-4)(V/V_0;V:被检测气体体积,V0:空气体积)体积比范围内,体积比与输出光强度间线性关系良好(R=0.9940),响应时间和恢复时间分别为3 s和11 s,信噪比S/N=4.8,RSD=0.5%(V/V_0=1×10~(-7))。平行试验中,其结果也具有良好的线性关系(R=0.9985),证明该传感元件对乙二胺气体检测的准确性。该类传感元件在食品品质检测方面有很好的应用与发展。  相似文献   
7.
The influence of heat-treatment temperature on the optical properties (refractive index, transmittance, and attenuation) and gas sensitivities of nickel-doped lithium iron phosphate (LiFe0.99Ni0.01PO4) thin films were discussed. LiFe0.99Ni0.01PO4 was synthesized in one step using hydrothermal methods and fixed to tin-diffused glass as a sensing film by spin-coating before calcination at different temperatures. The obtained thin films were characterized by refractive index, thickness, attenuation, and porosity, as well as gas sensing performances for benzene, toluene, and xylene. The experimental results indicated that the LiFe0.99Ni0.01PO4 thin films dried at 450°C displayed higher refractive indices, good transparency, and less attenuation; thus, the resulting sensor of a LiFe0.99Ni0.01PO4 thin film/tin-diffused optical wave-guide exhibited a greater response to xylene in the concentration range of 0.1–1000?ppm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号