首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Nitrogen-doped carbon nanofiber (NCNF) decorated LiFePO4 (LFP) composites are synthesized via an in situ hydrothermal growth method. Electrochemical performance results show that the embedded NCNF can improve electron and ion transfer, thereby resulting in excellent cycling performance. The as-prepared LFP and NCNF composites exhibit excellent electrochemical properties with discharge capacities of 188.9 mAh g?1 (at 0.2 C) maintained at 167.9 mAh g?1 even after 200 charge/discharge cycles. The electrode also presents a good rate capability of 10 C and a reversible specific capacity as high as 95.7 mAh g?1. LFP composites are a potential alternative high-performing anode material for lithium ion batteries.  相似文献   

2.
Carbon-coated olivine-structured LiFe0.5Co0.5PO4 solid solution was synthesized by a facile rheological phase method and applied as cathode materials of lithium-ion batteries. The nanostructure’s properties, such as morphology, component, and crystal structure for the samples, characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET) determination, X-ray photoelectron spectroscopy (XPS), and the electrochemical performances were evaluated using constant current charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results indicate that nanoplatelet- and nanorod-structured LiFe0.5Co0.5PO4/C composites were separately obtained using stearic acid or polyethylene glycol 400 (PEG400) as carbon source, and the surfaces of particles for the two samples are ideally covered by full and uniform carbon layer, which is beneficial to improving the electrochemical behaviors. Electrochemical tests verify that the nanoplatelet LiFe0.5Co0.5PO4/C shows a better capacity capability, delivering a discharge specific capacity of 133.8, 112.1, 98.3, and 74.4 mAh g?1 at 0.1, 0.5, 1, and 5 C rate (1 C?=?150 mA g?1); the corresponding cycle number is 5th, 11th, 15th, 20th, and 30th, respectively, whereas the nanorod one possesses more excellent cycling ability, with a discharge capacity of 83.3 mAh g?1 and capacity retention of 86.9% still maintained after cycling for 100 cycles at 0.5 C. Results from the present study demonstrate that the LiFe0.5Co0.5PO4 solid solution nanomaterials with favorable carbon coating effect combine the characteristics and advantage of LiFePO4 and LiCoPO4, thus displaying a tremendous potential as cathode of lithium-ion battery.  相似文献   

3.
Carbon encapsulated Li4Ti5O12 (C/Li4Ti5O12) anode material for lithium ion battery was prepared by using the pre-coat method of two steps, and the TiO2 was pre coated before the reaction with Li2CO3. The structure and morphology of the resultant C/Li4Ti5O12 materials were characterized by X-ray diffraction (XRD) and scanning microscopy (SEM). Electrochemical tests showed that at 0.1 C, the initial discharge capacity was 169.9 mAh g?1, and the discharge capacity was 80 mAh g?1 at 5 C. After 100 cycles at 2 C, the discharge specific capacity was 108.5 mAh g?1. Compare with one step coating method, results showed the C/Li4Ti5O12 prepared by pre-coat method can reduce the particle’s size and effectively improve the electrochemical performance.  相似文献   

4.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

5.
Three-dimensional fabricated Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were obtained from a facile hydrothermal strategy, followed by a subsequently heat treatment process. The Fe3O4 QDs (2–5 nm) are anchored tightly and dispersed uniformly on the surface of three-dimensional GA. The as-prepared anode materials exhibit a high reversible capacity of 1078 mAh g?1 at a current density of 100 mA g?1 after 70 cycles in lithium-ion batteries (LIBs) system. Moreover, the rate capacity still remains 536 mAh g?1 at 1000 mA g?1. The enhanced electrochemical performance is attributed to that the GA not only acts as a three-dimensional electronic conductive matrix for the fast transportation of Li+ and electrons, but also provides with double protection against the aggregation and pulverization of Fe3O4 QDs during cycling. Apparently, the synergistic effects of the three-dimensional GA and the quantum dots are fully utilized. Therefore, the Fe3O4 QDs/GA composites are promising materials as advanced anode materials for LIBs.  相似文献   

6.
A novel approach has been made to tailor Niobium pentoxide (Nb2O5) as a coating material on the surface of lithium iron phosphate (LiFePO4) via a facile polyol technique. The coating content was optimized at 1 wt%. The superficial coating demonstrated superior discharge capacity than the pristine LiFePO4. However, increasing the coating content further would result in a capacity loss. This may be due to the electrochemical inactiveness that increases with the content of the coating material, and 1 wt% of Nb2O5-coated LiFePO4 sample exhibits initial discharge capacity of 163 mAh g?1 at a current of 0.1 C and retains a stable discharge capacity of 143 mAh g?1 up to 400 cycles at 1 C rate with a coulombic efficiency of 98%.
Graphical abstract ?
  相似文献   

7.
S/Li4Ti5O12 cathode with high lithium ionic conductivity was prepared for Li-S battery. Herein, nano Li4Ti5O12 is used as sulfur host and fast Li+ conductor, which can adsorb effectively polysulfides and improve remarkably Li+ diffusion coefficient in sulfur cathode. At 0.5 C, S/Li4Ti5O12 cathode has a stable discharge capacity of 616 mAh g?1 at the 700th cycle and a capacity loss per cycle of 0.0196% from the second to the 700th cycle, but the corresponding values of S/C cathode are 437 mAh g?1 and 0.0598%. Even at 2 C, the capacity loss per cycle of S/Li4Ti5O12 cathode is only 0.0273% from the second to the 700th cycle. The results indicate that Li4Ti5O12 as the sulfur host plays a key role on the high performance of Li-S battery due to reducing the shuttle effect and enhancing lithium ionic conductivity.  相似文献   

8.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

9.
Yuan Xia  Hui Wang 《Ionics》2016,22(2):159-166
Different particle sizes of dodecahedron precursors are synthesized by controlling the polarity of the solution. Through the results of scanning electron microscope (SEM) images, it can be found that different particle sizes of precursors present obvious edge angles and their morphology can be well retained after annealing. X-ray diffraction (XRD) measurements suggest that the annealed polyhedral products are pure single-phase NiCo2O4. When tested as lithium-ion battery anode, 0.5 μm NiCo2O4 polyhedra exhibits a specific capacity of 1050 mAh g?1 at 0.1 C at the 60th cycle, which was higher than theoretical capacity of single metal oxide (NiO 718 mAh g?1 and Co3O4 890 mAh g?1). It also exhibits the highest rate capability with an average discharge capacity of 890, 700, 490, 330, and 300 mAh g?1 at 0.5, 2, 4, 8, and 10 C, respectively. Those advantages are attributed to that small-sized particle with great surface areas decrease the actual current density at the surface and inner of the prepared electrode.  相似文献   

10.
A flexible Co3O4 hollow microsphere/graphene/carbon nanotube hybrid film is successfully prepared through a facile filtration strategy and a subsequent thermally treated process. The composition, morphology, and structure of the as-prepared film are characterized by X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. Based on the morphology characterizations on the hybrid film, the Co3O4 hollow microspheres are uniformly and closely attached on three-dimensional (3D) graphene/carbon nanotubes (GR/CNTs) network, which decreases the agglomeration of Co3O4 microspheres effectively. In this hybrid film, the 3D GR/CNT network which enhances conductance as well as prevents aggregation is a benefit to help Co3O4 to exert its lithium storage capabilities sufficiently. When used as a binder-free anode material for lithium-ion batteries, the hybrid film delivers excellent electrochemical properties involving reversible capacity (863 mAh g?1 at a current density of 100 mA g?1) and rate performance (185 mAh g?1 at a current density of 1600 mA g?1).  相似文献   

11.
Lithium-rich cathode material Li[Li0.2Ni0.13Co0.13Mn0.54]O2 doped with trace Mo is successfully synthesized by a sol-gel method. The X-ray diffraction patterns show that trace Mo substitution increases the inter-layer space of the material, of which is benefiting to lithium ion insertion/extraction among the electrode materials. The (CV) tests demonstrate the decrease of polarization, and on the other hand, the lithium ion diffusion coefficient (D Li) of the modified material turns out to be larger, which indicates a faster electrochemical process. As a result, the Mo doped material possesses high rate performance and good cycling stability, and the initial discharge capacity reaches 149.3 mAh g?1 at a current density of 5.0 °C, and the residual capacity is 144.0 mAh g?1 after 50 cycles with capacity retention of 96.5 % in the potential range of 2.0–4.8 V at room temperature.  相似文献   

12.
A Co3O4/vapor-grown carbon fiber (VGCF) hybrid material is prepared by a facile approach, namely, via liquid-phase carbonate precipitation followed by thermal decomposition of the precipitate at 380 °C for 2 h in argon gas flow. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, and carbon elemental analysis. The Co3O4 in the hybrid material exhibits the morphology of porous submicron secondary particles which are self assembled from enormous cubic-phase crystalline Co3O4 nanograins. The electrochemical performance of the hybrid as a high-capacity conversion-type anode material for lithium-ion batteries is investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge methods. The hybrid material demonstrates high specific capacity, good rate capability, and good long-term cyclability, which are far superior to those of the pristine Co3O4 material prepared under similar conditions. For example, the reversible charge capacities of the hybrid can reach 1100–1150 mAh g?1 at a lower current density of 0.1 or 0.2 A g?1 and remain 600 mAh g?1 at the high current density of 5 A g?1. After 300 cycles at 0.5 A g?1, a high charge capacity of 850 mAh g?1 is retained. The enhanced electrochemical performance is attributed to the incorporated VGCFs as well as the porous structure and the smaller nanograins of the Co3O4 active material.  相似文献   

13.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   

14.
Hierarchical Na2FeP2O7 spheres with nanoparticles were successfully fabricated by a facile spray drying method. A relatively low drying temperature was introduced in order to form a carbon layer on the surface. As a cathode material for sodium-ion batteries, it delivered a reversible capacity of 84.4 mAh g?1 at 0.1 C and showed excellent cycling and rate performance (64.7 mAh g?1 at 5 C). Furthermore, a full sodium battery was fabricated using SP-Na2FeP2O7 as the cathode and hard carbon as the anode, suffering almost no capacity loss after 400 cycles at 1 C. Due to its superior electrochemical property and the low materials cost, Na2FeP2O7 is becoming a promising cathode material for large-scale energy storage systems.  相似文献   

15.
The development of methods to synthesize electrode materials can improve the performance of lithium ion storage. In this study, a facile and low-cost approach is employed to synthesize LiFePO4 (LFP/NC) hybrid materials decorated with nitrogen-doped carbon nanomaterials (NC). Melamine was used as nitrogen and carbon source with an NC to LFP ratio of 3.19%. As electrode materials for lithium ion batteries (LIBs), the LFP/NC composites exhibit an optimum performance with a high rate capacity of 144.6 mAh·g?1 at 1 C after 500 cycles without apparent loss. The outstanding cycling stability may be attributed to the synergetic effects of well-crystallized particles and NC layers.  相似文献   

16.
High-quality monodisperse multiporous hierarchical micro/nanostructured ZnCo2O4 microspheres have been fabricated by calcinating the Zn1/3Co2/3CO3 precursor prepared by urea-assisted solvothermal method. The as-prepared products are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and Brunauer-Emmett-Teller (BET) measurement to study the crystal phase and morphology. When tested as anode material for lithium ion batteries, the multiporous ZnCo2O4 microspheres exhibit an initial discharge capacity of 1,369 mAh g?1 (3,244.5 F cm?3) and retain stable capacity of 800 mAh g?1 (1,896 F cm?3) after 30 cycles. It should be noted that the good electrochemical performances can be attributed to the porous structure composed of interconnected nanoscale particles, which can promote electrolyte diffusion and reduce volume change during discharge/charge processes. More importantly, this ZnCo2O4 3D hierarchical structures provide a large number of active surface position for Li+ diffusion, which may contribute to the improved electrochemical performance towards lithium storage.  相似文献   

17.
Carbon-coated ZnFe2O4 spheres with sizes of ~110–180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g?1 and maintains a reversible capacity of 775 mAh g?1 after 150 cycles at a current density of 500 mA g?1. After being tested at 2 A g?1 for 700 cycles, the capacity still retains 617 mAh g?1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating (~3–6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries.
Graphical abstract ?
  相似文献   

18.
In this work, the commercial carbon paper was firstly peeled in K2CO3 solution and then was further treated in a KNO3 solution to form functional exfoliation graphene (FEG) on the commercial carbon paper. The FEG/carbon paper was characterized by Raman spectra and scanning electron microscopy, confirming that some typical layered fold graphenes were successfully peeled off and stood on the carbon paper matrix. Then, Fe3O4 nanoparticles (NPs) were grown on the surface of FEG/carbon paper and the as-prepared Fe3O4 NPs/FEG/carbon paper was directly used as supercapacitor electrode. The specific capacitance of Fe3O4 NPs/FEG/carbon paper was about 316.07 F g?1 at a current density of 1 A g?1. Furthermore, the FEG/carbon papers were also functionalized by benzene carboxylic acid to form FFEG/carbon papers, and then the Fe3O4 NPs were grown on the surface of FFEG/carbon paper. The specific capacitance of Fe3O4 NPs/FFEG/carbon paper was 470 F g?1 at a current density of 1 A g?1, superior to some previous reported results. This work might provide a new strategy to prepare various nanostructures on FFEG/carbon papers for future applications.  相似文献   

19.
By employment of nano-sized pre-prepared Mn3O4 as precursor, LiMn2O4 particles have been successfully prepared by facile solid state method and sol-gel route, respectively. And the reaction mechanism of the used precursors of Mn3O4 is studied. The structure, morphology, and element distribution of the as-synthesized LiMn2O4 samples are characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Compared with LiMn2O4 synthesized by facile solid state method (SS-LMO), LiMn2O4 synthesized by modified sol-gel route (SG-LMO) possesses higher crystallinity, smaller average particle size (~175 nm), higher lithium chemical diffusion coefficient (1.17 × 10?11 cm2 s?1), as well as superior electrochemical performance. For example, the cell based on SG-LMO can deliver a capacity of 85.5 mAh g?1 at a high rate of 5 °C, and manifests 88.3% capacity retention after 100 cycles at 0.5 °C when cycling at 45 °C. The good electrochemical performance of the cell based on SG-LMO is ascribed mainly to its small particle size, high degree of dispersion, and uniform element distribution in bulk material. In addition, the lower polarization potential accelerates Li+ ion migration, and the lower atom location confused degree maintains integrity of crystal structure, both of which can effectively improve the rate capability and cyclability of SG-LMO.  相似文献   

20.
Lithium manganese oxide (LiMn2O4) has been prepared using sol-gel technique under acidic (pH = 5.8) and alkaline (pH = 9) conditions with tartaric acid as chelating agent. X-ray studies show that under acidic condition, an Mn2O3 peak was observed indicating the presence of impurities. No impurity was observed for LiMn2O4 under alkaline conditions. The particle size is mostly in the range of 124 to 185 nm from HR-TEM. The lithium diffusion coefficient, D Li+ in LiMn2O4 is of the order 10?9 cm2 s?1. By using density functional theory (DFT) calculations, structural properties have been obtained. The specific discharge capacity of the cells with LiMn2O4 prepared under alkaline condition and with LiMn2O4 prepared under acidic condition discharged at 0.5 C is in the ranges of 132 to 142 and 128 to 139 mAh g?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号