首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
潘慧霖  胡勇胜  李泓  陈立泉 《中国物理 B》2011,20(11):118202-118202
The rate and cycling performances of the electrode materials are affected by many factors in a practical complicated electrode process. Learning about the limiting step in a practical electrochemical reaction is very important to effectively improve the electrochemical performances of the electrode materials. Li4Ti5O12, as a zero-strain material, has been considered as a promising anode material for long life Li-ion batteries. In this study, our results show that the Li4Ti5O12 pasted on Cu or graphite felt current collector exhibits unexpectedly higher rate performance than on Al current collector. For Li4Ti5O12, the electron transfer between current collector and active material is the critical factor that affects its rate and cycling performances.  相似文献   

2.
以硝酸锂、钛酸正丁酯和糠醇为反应物,采用糠醇聚合凝胶法制备了纳米Li4Ti5O12粉体.利用XRD、SEM和BET比表面测试对产物进行了表征,并研究了纳米Li4Ti5O12粉体作为锂离子电池负极材料的电化学性能.在700℃或更高温度烧结时产物为纯相的尖晶石型.通过柠檬酸、聚乙烯吡咯烷酮、十六烷基三甲基溴化铵(CTAB)表面活性剂的加入能够减少产物颗粒的团聚程度,增大粉体的比表面积,提高其电化学性能.加入0.5 g CTAB、700℃烧结12 h的Li4Ti5O12粉体展示出最高的比容量和最佳的循环性能,10 C下充电比容量高达156.7 mAh/g.  相似文献   

3.
Lithium-ion batteries with both high power and high energy density are one of the promising power sources for electric devices, especially for electric vehicles (EV) and other portable electric devices. One of the challenges is to improve the safety and electrochemical performance of lithium ion batteries anode materials. Li4Ti5O12 has been accepted as a novel anode material of power lithium ion battery instead of carbon because it can release lithium ions repeatedly for recharging and quickly for high current. However, Li4Ti5O12 has an insulating character due to the electronic structure characterized by empty Ti 3d-states, and this might result in the insufficient applications of LTO at high current discharge rate before any materials modifications. This review focuses first on the present status of Li4Ti5O12 including the synthesized method, doping, surface modification, application and theoretical calculation, then on its near future development.  相似文献   

4.
This paper studies the structure and electronic properties of Li4Ti5O12, as anode material for lithium ion batteries, from first principles calculations. The results suggest that there are two kinds of unit cell of Li4Ti5O12: n-type and p-type. The two unit cells have different structures and electronic properties:the n-type with two 16d site Li ions is metallic by electron, while the p-type with three 16d Li ions is metallic by hole. However, the Li4Ti5O12 is an insulator. It is very interesting that one n-type cell and two p-type cells constitute one Li4Ti5O12 supercell which is insulating. The results show that the intercalation potential obtained with a p-type unit cell with one additional electron is quite close to the experimental value of 1.5 V.  相似文献   

5.
Spinel Li4Ti5O12/C powders were synthesized successfully by a simple rheological phase method using polyvinylbutyral (PVB) as both template and carbon source. The structure and morphology characteristics of the composite were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy and transmission electron microscopy. The XRD results showed that the composite had a good crystallinity. Its average particle size was about 2.1 μm with a narrow size distribution as a result of homogeneous mixing of the precursors. The in situ carbon coating produced by decomposition of PVB played an important role in improving electrical conductivity, thereby enhancing the rate capacity of Li4Ti5O12 as anode material in Li-ion batteries. The Li4Ti5O12/C composite, synthesized at 800 °C for 15 h under argon, containing 0.98 wt% of carbon, exhibited better electrochemical properties in comparison with the pristine Li4Ti5O12, which could be attributed to the enhanced electrical conductive network of the carbon coating on the particle surface.  相似文献   

6.
Spherical-shaped Li4Ti5O12 anode powders with a mean size of 1.5 μm were prepared by spray pyrolysis. The precursor powders obtained by spray pyrolysis had no peaks of crystal structure of Li4Ti5O12. The powders post-treated at temperatures of 800 and 900 °C had the single phase of spinel Li4Ti5O12. The powders post-treated at a temperature of 1000 °C had main peaks of the Li4Ti5O12 phase and small impurity peaks of Li2Ti3O7. The spherical shape of the precursor powders was maintained after post-treatment at temperatures below 800 °C. The Brunauer-Emmett-Teller (BET) surface areas of the Li4Ti5O12 anode powders post-treated at temperatures of 700, 800 and 900 °C were 4.9, 1.6 and 1.5 m2/g, respectively. The initial discharge capacities of Li4Ti5O12 powders were changed from 108 to 175 mAh/g when the post-treatment temperatures were changed from 700 to 1000 °C. The maximum initial discharge capacity of the Li4Ti5O12 powders was obtained at a post-treatment temperature of 800 °C, which had good cycle properties below current densities of 0.7 C.  相似文献   

7.
Lithium insertion into spinel Li4Ti5O12 incorporated with rutile TiO2 was investigated in order to clarify the redox mechanism responsible for the first plateau at 1.5 V vs. Li/Li+. Spherical Li4Ti5O12 powders with an average diameter of 2-3 μm can be achieved by spray drying followed by sintering process. The Li/Ti molar ratio in the precursor is selected as the factor for preparing spinel Li4Ti5O12 powders with different concentrations of rutile TiO2. The specific capacity from the first plateau at 1.5 V contributes to the major portion in the overall capacity. The rutile TiO2 in spinel Li4Ti5O12 anodes tends to improve the specific capacity at the first plateau. This can be attributed to two possible reasons: (i) rutile TiO2 provides an additional number of sites (i.e., oxygen octahedral vacancy in rutile TiO2) for the Li insertion, and (ii) less amount of residual Li oxides results in high electronic conductivity. The Li4Ti5O12 anodes display high rate capability with low irreversible capacity, indicating good reversibility of insertion/de-insertion of Li ions. The results presented in this work show unambiguously that the presence of rutile TiO2 in spinel Li4Ti5O12 has a positive effect on the performance promotion of Li4Ti5O12 anodes.  相似文献   

8.
王华  任明放 《物理学报》2007,56(12):7315-7319
采用溶胶凝胶工艺在p-Si衬底上制备了SrBi2Ta2O9/Bi4Ti3O12复合铁电薄膜. 研究了SrBi2Ta2O9/Bi4Ti3O12复合薄膜的微观结构与生长行为、铁电性能和疲劳特性. 研究表明: Si衬底Bi4Ti< 关键词: 2Ta2O9')" href="#">SrBi2Ta2O9 4Ti3O12')" href="#">Bi4Ti3O12 复合铁电薄膜 溶胶凝胶工艺  相似文献   

9.
M. Ganesan 《Ionics》2008,14(5):395-401
Chromium-substituted Li4Ti5O12 has been investigated as a negative electrode for future lithium batteries. It has been synthesized by a solid-state method followed by quenching leading to a micron-sized material. The minimum formation temperature of Li4Ti2.5Cr2.5O12 was found to be around 600 °C using thermogravimetric and differential thermal analysis. X-ray diffraction, scanning electron microscopy, cyclic voltammetry (CV), impedance spectroscopy, and charge–discharge cycling were used to evaluate the synthesized Li4Ti2.5Cr2.5O12. The particle size of the powder was around 2–4 μm. CV studies reveal a shift in the deintercalation potential by about 40 mV, i.e., from 1.54 V for Li4Ti5O12 to 1.5 V for Li4Ti2.5Cr2.5O12. High-rate cyclability was exhibited by Li4Ti2.5Cr2.5O12 (up to 5  C) compared to the parent compound. The conduction mechanism of the compound was examined in terms of the dielectric constant and dissipation factor. The relaxation time has been evaluated and was found to be 0.07 ms. The mobility was found to be 5.133 × 10−6 cm2 V−1 s−1.  相似文献   

10.
Qian Huang  Zhen Yang  Jian Mao 《Ionics》2017,23(4):803-811
Li4Ti5O12 is regarded as the ideal anode material for its stable structure, high charge/discharge platform, and safety performance. But low ionic and electronic conductivity of the Li4Ti5O12 anode material under the condition of low temperature greatly limit its application in practical production. In this paper, some modified methods for improving the low-temperature electrochemical performance of Li4Ti5O12 anode material were summarized. Meanwhile, we explored its influence mechanisms at low temperature, one is, with the subtle changes of lattice parameters and oxygen atom fraction coordinates of Li4Ti5O12 at low temperature, the changes of the bond length influence the structural stability of Li4Ti5O12 and the diffusion path of lithium ions; the other reason is that the charge transfer resistance increases obviously and the lithium ion diffusion coefficient reduces under low temperature. Finally, the research directions for improving the low-temperature electrochemical performance were proposed.  相似文献   

11.
La掺杂对Bi4Ti3O12薄膜铁电性能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
郭冬云  王耘波  于军  高俊雄  李美亚 《物理学报》2006,55(10):5551-5554
利用Sol-Gel法在Pt/Ti/SiO2/Si衬底上制备出Bi4Ti3O12和Bi3.25La0.75Ti3O12薄膜,研究了La掺杂对Bi4Ti3O12薄膜的晶体结构、铁电性能和疲劳特性的影响,发现La掺杂没有改变Bi4Ti3O12薄膜的基本晶体结构,并且提高了Bi4Ti3O12铁电薄膜的剩余极化值和抗疲劳性能,对La掺杂改善Bi4Ti3O12铁电薄膜性能的机理进行了讨论. 关键词: 铁电性能 4Ti3O12薄膜')" href="#">Bi4Ti3O12薄膜 3.25La0.75Ti3O12薄膜')" href="#">Bi3.25La0.75Ti3O12薄膜 sol-gel法 La掺杂  相似文献   

12.
Si基Bi4Ti3O12铁电薄膜的制备与特性研究   总被引:11,自引:6,他引:5       下载免费PDF全文
王华 《物理学报》2004,53(4):1265-1270
采用sol-gel工艺, 在分层快速退火的工艺条件下成功地制备了高质量Si基Bi4Ti3O12铁电薄膜. 研究了Si基Bi4Ti3O12薄膜的生长行为、铁电性能、C-V特性和疲劳特性. 研究表明: Si基Bi4Ti3O12薄膜具有随退火温度升高沿c轴择优生长的趋势; 退火温度通过影响薄膜的晶粒尺寸、生长取向和薄膜中载流子的浓度来改变Si基Bi关键词: sol-gel法 铁电薄膜 4Ti3O12')" href="#">Bi4Ti3O12 C-V特性  相似文献   

13.
CaCu3Ti4O12块材和薄膜的巨介电常数   总被引:4,自引:2,他引:2       下载免费PDF全文
赵彦立  焦正宽  曹光旱 《物理学报》2003,52(6):1500-1504
用固相反应法和脉冲激光沉积(PLD)制备了CaCu3Ti4O12块材和薄膜,获得了相对介电常数ε′(1kHz,300K)高于14000的介电特性,是目前该体系最好的结果.报道了(00l)取向高质量CaCu3Ti4O12外延薄膜及其介电性质.C aCu3Ti4O12相对介电常数ε′在100—300K温度范围 内 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 巨介电常数 PLD  相似文献   

14.
Spinel Li4Ti5O12 thin films are important for the fabrication of rechargeable lithium microbatteries. Porous thin films of Li4Ti5O12 were prepared by electrostatic spray deposition (ESD) technique with lithium acetate and titanium butoxide as the precursors. The structures of these films were analyzed by scanning electron microscopy and X-ray diffraction. Coin-type cells with a liquid electrolyte were made with the Li4Ti5O12 films against metallic lithium. Their electrochemical performance was investigated by means of galvanostatic cell cycling, cyclic voltammetry and Ac impedance spectroscopy. It was found that pure spinel phase of Li4Ti5O12 was obtained. After annealing at the optimal temperature of 700 °C, the films can deliver a reversible specific capacity of about 150 mAh/g with excellent capacity retention after 70 cycles. Their electrochemical characteristics were quite comparable with those of the Li4Ti5O12 laminate electrodes containing carbon black additive.  相似文献   

15.
王华  任鸣放 《物理学报》2006,55(3):1512-1516
在溶胶-凝胶工艺获得高质量Bi4Ti3O12薄膜的基础上 ,制备了Ag/Bi4Ti3O12栅n沟道铁电场效应晶体管. 研 究了Si基Bi4Ti3O12薄膜的生长特性及其对铁电薄膜/ 硅的界面状态和铁电场效应晶体管存储特性的影响. 研究表明,在合理的工艺条件下可以获 得具有较高c-轴择优取向的纯钙钛矿相Si基Bi4Ti3O12 铁电薄膜并有利于改善Bi4Ti3O12/Si之间的界面特性; 顺时针回滞的C-V特性曲线和C-T曲线表明Ag/Bi4Ti3O12栅n沟道铁电场效应晶体管具有极化存储效应和一定的极化电荷保持能力; 器件的转移(I< sub>sd-VG)特性曲线显示Ag/Bi4Ti3O12栅n沟道铁电场效应晶体管具有明显的栅极化调制效应. 关键词: 铁电场效应晶体管 4Ti3O12')" href="#">Bi4Ti3O12 存储 特性 溶胶-凝胶工艺  相似文献   

16.
C. P. Sandhya  Bibin John  C. Gouri 《Ionics》2014,20(5):601-620
Lithium titanate (Li4Ti5O12) has emerged as a promising anode material for lithium-ion (Li-ion) batteries. The use of lithium titanate can improve the rate capability, cyclability, and safety features of Li-ion cells. This literature review deals with the features of Li4Ti5O12, different methods for the synthesis of Li4Ti5O12, theoretical studies on Li4Ti5O12, recent advances in this area, and application in Li-ion batteries. A few commercial Li-ion cells which use lithium titanate anode are also highlighted.  相似文献   

17.
One-dimensional Co2+-doped Li4Ti5O12 nanofibers with a diameter of approximately 500 nm have been synthesized via a one-step controllable electrospinning method. The Co2+-doped Li4Ti5O12 nanofibers were systematically characterized by XRD, ICP, TEM, SEM, BET, EDS mapping, and XPS. Based on the cubic spinel structure and one-dimensional effect of Li4Ti5O12, Co2+-doped Li4Ti5O12 nanofibers exhibit the enlarged lattice volume, reduced particle size and enhanced electrical conductivity. More importantly, Co2+-doped Li4Ti5O12 nanofibers as a lithium ion battery anode electrode performs superior electrochemical performance than undoped Li4Ti5O12 electrode in terms of electrochemical measurements. Particularly, the reversible capacity of Co2+-doped Li4Ti5O12 electrode reaches up to 140.1 mAh g?1 and still maintains 136.5 mAh g?1 after 200 cycles at a current rate of 5 C. Therefore, one-dimensional Co2+-doped Li4Ti5O12 nanofiber electrodes, showing high reversible capacity and remarkable recycling property, could be a potential candidate as an anode material.  相似文献   

18.
NbTi0.5Ni0.5O4 (NTNO) has been prepared using solid state synthesis and investigated as a potential anode material. The oxide form of NTNO has single phase rutile-type structure with tetragonal (P42/mnm) space group. The reduced form is a composite of nano-scaled particles of metallic Ni and Nb1.33Ti0.67O4 phase. Reduced NTNO showed high electronic conductivity up to 280 S.cm− 1 at 900 °C in reducing atmosphere, but suffers from low CTE equal to 3.78 10− 6 K− 1. Studies of NTNO as anode material were carried out in a three electrode - electrochemical half cell configuration under pure humidified H2 at 900 °C using a 2 mm thick zirconia electrolyte and without any additional current collector material. The results show a reasonable series resistance (Rs) equal to 2.7 Ωcm2 (about 50% higher than for metallic gold layers) indicating a good current collection performance for a 10 μm layer of material. The polarization resistance (Rp) was equal to 33 Ωcm2 and is attributed to a poor density of three phase boundaries (TPB) and shortage of oxide ion conduction in the anode layer. The results show the potential of NTNO as an anode material, especially after optimization of the microstructure towards the increase of TPB length.  相似文献   

19.
王华  任鸣放 《物理学报》2006,55(6):3152-3156
采用Sol-Gel工艺低温制备了Si基Bi3.25La0.75Ti3O12铁电薄膜.研究了退火温度对薄膜微观结构、介电特性与铁电性能的影响.500℃退火处理的Bi3.25La0.75Ti3O12薄膜未能充分晶化,晶粒细小且有非晶团聚,介电与铁电性能均较差.高于550℃退火处理的Bi3.25La0.75 关键词: 铁电薄膜 3.25La0.75Ti3O12')" href="#">Bi3.25La0.75Ti3O12 Sol-Gel工艺  相似文献   

20.
朱骏  卢网平  刘秋朝  毛翔宇  惠荣  陈小兵 《物理学报》2003,52(10):2627-2631
采用固相烧结工艺,制备了不同La掺杂量(x=0.00,0.25,0.50,0.75,1.00,1.25和1.50) 的(Bi, La)4Ti3O12-Sr(Bi, La)4Ti4O15 (SrBi8-xLaxT i7O27)共生结构铁电陶瓷样品.用x射线衍射对其进行微结构分析 ,并测量铁 关键词: 4Ti3O12-SrBi4Ti4O15')" href="#">Bi4Ti3O12-SrBi4Ti4O15 La掺杂 铁电性能 居里温度 弛豫铁电  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号