首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
Uni-traveling-carrier photodiodes(UTC-PDs)with ultrafast response and high saturation output are reported.A gradient doping layer and a narrow InP cliff layer were introduced to enhance the saturation and bandwidth characteristics.We measured the dark current,photo response,bandwidth,and saturation current of the fabricated UTC devices.For a15-μm-diameter device,the dark current was 3.5 nA at a reverse bias of 1 V,and the 3-dB bandwidth was 17.2 GHz at a reverse bias of 5 V,which are comparable to the theoretically values.The maximum responsivity at 1.55μm was 0.32 A/W.The saturation output current was over 19.0 mA without bias.  相似文献   

2.
We describe the structure and testing of one-dimensional array parallel-optics photo-detectors with 16 photodiodes of which each diode operates up to 8 Gb/s. The single element is vertical and top illuminated 30μm-diameter silicon on insulator (Ge-on-SOI) PIN photodetector. High-quality Ge absorption layer is epitaxially grown on SO1 substrate by the ultra-high vacuum chemical vapor deposition (UHV-CVD). The photodiode exhibits a good responsivity of 0.20 A/W at a wavelength of 1550 nm. The dark current is as low as 0.36/aA at a reverse bias of 1 V, and the corresponding current density is about 51 mA/cm2. The detector with a diameter of 30 t.trn is measured at an incident light of 1.55 μm and 0.5 mW, and the 3-dB bandwidth is 7.39 GHz without bias and 13.9 GHz at a reverse bias of 3 V. The 16 devices show a good consistency.  相似文献   

3.
GaN epilayers were grown on sapphire substrates by metal-organic chemical vapour deposition. Metal-semiconductor-metal photoconductive detectors were fabricated using this material. The photocurrent properties of the detectors were measured and analysed. The spectrum response shows a high sensitivity in the wavelength region from 330 to 360nm, with a peak at 358nm and a sharp cutoff near 360nm. The maximum responsivities at 358nm were 700A/W (2V) and 7000A/W (30V). The relationship between responsivity and bias indicates that the responsivity increases linearly with bias until 30V. The influence of the spacing between two electrodes on the detector responsivity was also studied.  相似文献   

4.
GaN epilayers were grown on sapphire substrates by metal-organic chemical vapour deposition. Metal-semiconductor-metal photoconductive detectors were fabricated using this material. The photocurrent properties of the detectors were measured and analysed. The spectrum response shows a high sensitivity in the wavelength region from 330 to 360nm, with a peak at 358um and a sharp cutoff near 360nm. The maximum responsivities at 358nm were 700A/W (2V) and 7000A/W (30V). The relationship between responsivity and bias indicates that the responsivity increases linearly with bias until 30V. The influence of the spacing between two electrodes on the detector responsivity was also studied.  相似文献   

5.
Heterojunction phototransistors (HPTs) with several Ge/Si nano-dot layers as the absorption region are fabricated to obtain improved light detectivity at 1.55μm. The HPT detectors are of n-p-n type with ten layers of Ge(8ML ) /Si(45nm) incorporated in the base-collector junction and are grown by an ultrahigh-vacuum chemicalvapor-deposition system. The detectors are operated with normal incidence. Because of the good quality of the grown material and fabrication process, the dark current is only 0.71pA/μm^2 under 5 V bias and the breakdown voltage is over 20 V. Compared to the positive-intrinsic-negative (PIN) reference detector with the same absorption layer, the responsivity is improved over 17 times for normal incidence at 1.55μm.  相似文献   

6.
High-performance Ge-on-SOI p–i–n waveguide photodetectors with different sizes were fabricated. The performances, in terms of dark-current, photo current responsivity and 3-d B bandwidth, were well studied. A responsivity of 0.842 A/W at 1550 nm and dark current of 70 n A was measured from this detector at-1 V. The detector with a size of4 μm×10 μm demonstrated an optical band width of 19 GHz at-5 V for 1550 nm. Both the experimental results and the finite-difference time domain simulation show that, when the device size is above a certain threshold, the absorption is not sensitively dependent on such designing parameters as the width and length of the photodetector.  相似文献   

7.
The optoelectronic properties of n-TiO2NW/p-Si heterojunction fabricated by depositing TiO2 nanowires on a p-Si substrate are studied. Under excitation at a wavelength of 370 nm, the TiO2 nanowires produce a light emission at 435 nm due to the emission of free excitons. The I-V characteristics are measured to investigate the heterojunction effects under the dark environment and ultraviolet (UV) illumination, n-TiOzNW/p-Si has a p-n junction formed in the n-TiOz/p-Si beterojunction. TiO2NW/Si photodiode produces a pbotocurrent larger than dark current under UV illumination. It is observed that UV photons are absorbed in TiO2 and the heterojunction shows a 0.034-A/W responsivity at 4-V reverse bias.  相似文献   

8.
we report n Bn photodetectors based on In As0.91 Sb0.09 with a 100% cut-off wavelength of 4.75 μm at 300 K. The band of an n Bn detector is similar to that of a standard pin detector, but there is special wide bandgap Al As0.08 Sb0.92 barrier layer in the n Bn detector, in which the depletion region of n Bn detector exists. The n Bn design has many advantages, such as low dark current and high quantum efficiency, because the n Bn design can suppress the generation–recombination(GR)current that is the main composition of standard pin detector dark current. The constant slope of the Arrhenius plot of J0–1/T indicates the absence of the generation–recombination dark current. We fabricate an n Bn detector with a quantum efficiency(QE) maximum of ~ 60% under-0.2-V bias voltage. The In As Sb n Bn detectors may be a competitive candidate for midwavelength infrared detector.  相似文献   

9.
A top-illuminated circular mesa uni-traveling-carrier photodetector(UTC-PD) is proposed in this paper. By employing Gaussian graded doping in In Ga As absorption layer and In P depleted layer, the responsivity and high speed response characteristics of the device are optimized simultaneously. The responsivity up to 1.071 A/W(the external quantum efficiency of 86%) is obtained at 1550 nm with a 40-μm diameter device under 10-V reverse bias condition. Meanwhile, the dark current of 7.874 n A and the 3-d B bandwidth of 11 GHz are obtained with the same device at a reverse bias voltage of3 V.  相似文献   

10.
Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 μm at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy system. The large lattice mismatch strain is accommodated by growth of a linearly graded buffer layer to create a high quality virtual InP substrate indium content in the metamorphic buffer layer linearly changes from 2% to 60%. The dark current densities are typically 5 × 10^-6 A/cm^2 at 0 V bias and 2.24 × 10^-4 A/cm^2 at a reverse bias of 5 V. At a wavelength of 1.55 μm, the PDs have an optical responsivity of 0.48 A/W, a linear photoresponse up to 5 mW optical power at -4 V bias. The measured -3 dB bandwidth of a 32 μm diameter device is 7 GHz. This work proves that InGaAs buffer layers grown by solid source MBE are promising candidates for GaAs-based long wavelength devices.  相似文献   

11.
A high-speed silicon modulator with broad optical bandwidth is proposed based on a symmetrically configured Mach–Zehnder interferometer.Careful phase bias control and traveling-wave design are used to improve the high-speed performance.Over a broadband wavelength range,high-speed operation up to 30 Gbit/s with a 4.5 dB–5.5 dB extinction ratio is experimentally demonstrated with a low driving voltage of 3 V.  相似文献   

12.
A general scheme of generating NOON states of virtually-excited 2N atoms is proposed. The two cavities are fibre-connected with N atoms in each cavity. Although we focus on the case of N = 2, the system can be extended to a few atoms with N 〉2. It is found that all 2N atoms can be entangled in the form of NOON states if the atoms in the first cavity are initially in the excited states and atoms in the second cavity are all in the ground states. The feasibility of the scheme is carefully discussed, it shows that the NOON state with a few atoms can be generated with good fidelity and the scheme is feasible in experiment.  相似文献   

13.
Thanks to resonant characteristics of metallic nanoparticles, optical waves scattered from plasmonic nanoantennae can be well tailored in both amplitude and phase. We numerically demonstrate that, by varying the lengths and the lateral positions of gold nanorods in vicinity of a silicon waveguide, unidirectional emissions with typical forward-backward contrast ratio of 15 dB and directivity of 12 dB can be acquired in a plasmonic phased antenna array with sub-wavelength device length. The properties, i.e., the emission directionality and the size compactness, can be employed to control the far-field radiation pattern from a dielectric photonic circuit. Moreover, by altering the orientations of the dielectric waveguides decorated with plasmonic phased antenna arrays, we propose wireless light transportations in a layered photonic infrastructure, which may have applications in high-density photonic integrations.  相似文献   

14.
The effect of deuteron breakup in d-nucleus reaction is treated with the continuum discretized coupled channels (CDCC) approach, and the effects on the total reaction cross sections and elastic scattering angular distributions are studied by comparing the calculations of CDCC and spherical optical model with our global deuteron optical potential [Phys. Rev. C 73 (2006) 054605] below 200 MeV, for target nuclei ranging from ^12C to ^208Pb. The contributions from the closed channels to the total reaction and breakup cross sections, and angular distributions of elastic scattering are also seriously discussed.  相似文献   

15.
The Ga203/ZnO multilayer films are deposited on quartz substrates by magnetron sputtering, the thickness values of Ga203 layers are in a range of 19 nm-2.5 nm and the thickness of ZnO layer is a constant of 1 nm. Formation of spinel ZnGa204 film is achieved via the annealing of the Ga203/ZnO multilayer film. The influences of original Ga203 sublayer thickness on the optical and structural properties of Ga203/ZnO multilayer films and annealed films are studied. With the decrease of the thickness of Ga203 sublayer, the optical band-gap of Ga203/ZnO multilayer film decreases, the intensity of UV emission diminishes and the intensity of violet emission increases. The annealed film displays the enlarged optical band gap and the quenched violet emission. UV fluorescence bands are observed from Ga203 and ZnGa204.  相似文献   

16.
Experiments on trapping ytterbium atoms in various optical lattices are presented. After the two-stage cooling, first in a blue magneto-optical trap and then in a green magneto-optical trap, the ultracold 171 Yb atoms are successfully loaded into one-, two-, and three-dimensional optical lattices operating at the Stark-free wavelength, respectively. The temperature, number, and lifetime of cold 171 Yb atoms in one-dimensional lattice are measured. After optimization, the one-dimensional lattice with cold 171Yb atoms is used for developing an ytterbium optical clock.  相似文献   

17.
Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM) results show similar morphologies for the undoped and doped PbS nanostructures. X-ray diffraction (XRD) patterns of three sets of the nanostructures indicate that these nanostructures each have a PbS structure with a cubic phase. Evidence of dopant incorporation is demonstrated by X-ray photoelectron spectroscopy (XPS). Raman spectra of the synthesized samples con- firm the XRD results and indicate five Raman active modes, which relate to the PbS cubic phase for all the nanostructures. Room temperature photoluminescence (PL) and UV-Vis spectrometers are used to study optical properties of the undoped and doped PbS nanostructures. Optical characterization shows that emission and absorption peaks are in the infrared (IR) region of the electromagnetic spectrum for all PbS nanostructures. In addition, the optical studies of the doped PbS nanos- tructures reveal that the band gap of the Se-doped PbS is smaller, and the band gap of the Zn-doped PbS is bigger than the band gap of the undoped PbS nanostructures.  相似文献   

18.
Zinc oxide(ZnO) nanopowders doped with different metal ions(Me, Me = Sn4+, In3+, Mn2+, and Co2+) are prepared by a simple sol–gel method. Influences of the ion doping on morphology and optical properties of the resulting ZnxMeyO are investigated by scanning electron microscopy, X-ray diffraction, UV-vis absorption spectrum, and photoluminescence. The morphology of ZnO can be tailored by ion doping, which is closely related not only to the ionic radii and electronegativities of the doped ions, but also to their oxidation states and electron configurations. The optical band gap and photoluminescence of ZnO can also be modulated by ion doping, which results from a combination of different effects, Burstein–Moss, band tail, charge compensation, sp–d exchange, non-radiative recombination, and blocking barrier. This may offer us a viable approach to tuning the(optical) properties of ZnO-based materials via rational ion doping.  相似文献   

19.
The structural, electronic, and optical properties of binary ZnO, ZnSe compounds, and their ternary ZnOl_xSex alloys are computed using the accurate full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method in the rocksalt (B 1) and zincblende (B3) crystallographic phases. The electronic band structures, fundamental energy band gaps, and densities of states for ZnO1_xSex are evaluated in the range 0 〈 x 〈 1 using Wu-Cohen (WC) generalized gradient approximation (GGA) for the exchange-correlation potential. Our calculated results of lattice parameters and bulk modulus reveal a nonlinear variation for pseudo-binary and their ternary alloys in both phases and show a considerable deviation from Vegard's law. It is observed that the predicted lattice parameter and bulk modulus are in good agreement with the available experimental and theoretical data. We establish that the composition dependence of band gap is semi-metallic in B1 phase, while a direct band gap is observed in B3 phase. The calculated density of states is described by taking into account the contribution of Zn 3d, O 2p, and Se 4s, and the optical properties are studied in terms of dielectric functions, refractive index, reflectivity, and energy loss function for the B3 phase and are compared with the available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号