首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
高琨  解士杰  李元  尹笋  刘德胜  赵显 《中国物理 B》2009,18(7):2961-2966
The effect of interchain coupling on the formation and the stability of a biexciton is studied in poly (p-phenylene vinylene) chains in the framework of the tight-binding approach. We obtain an intrachain exciton and biexciton as well as an interchain exciton and biexciton through a double-photon excitation. It is found that a biexciton is energetically favourable to two single excitons even when there exists an interchain coupling. There is a turnover value t⊥C of the interchain coupling for the formation of a biexciton, beyond which two excitons are combined into one biexciton. The binding energy of a biexciton is calculated to decrease with the increase of interchain coupling, which indicates that a biexciton is relatively stable in polymers with a weak interchain coupling. The conclusion is consistent with the experimental observations. In addition, a suggestion about how to improve the yielding efficiency or the formation of biexcitons in actual applications is given.  相似文献   

2.
《中国物理 B》2021,30(9):97805-097805
A very long lifetime exciton emission with non-single exponential decay characteristics has been reported for single InA-s/GaAs quantum dot(QD) samples,in which there exists a long-lived metastable state in the wetting layer(WL)through radiative field coupling between the exciton emissions in the WL and the dipole field of metal islands.In this article we have proposed a new three-level model to simulate the exciton emission decay curve.In this model,assuming that the excitons in a metastable state will diffuse and be trapped by QDs,and then emit fluorescence in QDs,a stretchedlike exponential decay formula is derived as I(t)=At~(β-1)e~(-(rt)β),which can describe well the long lifetime decay curve with an analytical expression of average lifetime  相似文献   

3.
The single and a few coupled quantum dots are important for future quantum information sciences and their investigation is also a big challenge in physics. We investigate here the electronic and exciton states and their interaction with each other via micro photoluminescence. The luminescence for single and a few dots as well as a dot molecule of CdSe/ZnSe are measured with very high resolution, under liquid He temperature and magnetic fields and with different polarization of excitation laser. The observed sharp spectral lines are attributed to the atomlike transitions of exciton, trion, biexciton… in the investigated single QD or QD molecule. Band filling, Zeeman splitting, spin transition and their relaxation are observed and investigated'from the spectra and compared with those of same material in different dimensions, and compared with the primary calculation as well. In addition, quite a few new phenomena, which can not be understood based on our present model and knowledge, are also observed; and some very interesting problems are left for further investigation.  相似文献   

4.
We study theoretically the exciton Bose–Einstein condensation and exciton vortices in a two-dimensional(2 D)perovskite(PEA)_2 Pb I_4 monolayer. Combining the first-principles calculations and the Keldysh model, the exciton binding energy of in a(PEA)_2 Pb I_4 monolayer can approach hundreds of me V, which make it possible to observe the excitonic effect at room temperature. Due to the large exciton binding energy, and hence the high density of excitons, we find that the critical temperature of the exciton condensation could approach the liquid nitrogen regime. In the presence of perpendicular electric fields, the dipole-dipole interaction between excitons is found to drive the condensed excitons confined in(PEA)_2 Pb I_4 monolayer flakes into patterned vortices, as the evolution time of vortex patterns is comparable to the exciton lifetime.  相似文献   

5.
史俊杰 《中国物理》2002,11(12):1286-1293
A variational calculation is presented for the ground-state properties of excitons confined in spherical core-shell quantum-dot quantum-well (QDQW) nanoparticles. The relationship between the exciton states and structure parameters of QDQW nanoparticles is investigated, in which both the heavy-hole and the light-hole exciton states are considered. The results show that the confinement energies of the electron and hole states and the exciton binding energies depend sensitively on the well width and core radius of the QDQW structure. A detailed comparison between the heavy-hole and light-hole exciton states is given. Excellent agreement is found between experimental results and our calculated 1se-1sh transition energies.  相似文献   

6.
刘永辉  孔小均 《中国物理快报》2005,22(11):2963-2965
In the effective mass approximation, using the variational technology and a method of expanding the wavefunctions of exciton in terms of the eigenfunctions of the noninteracting electron-hole system, we calculate the exciton and biexciton ground state binding energies for rectangular quantum dots (QDs). In the calculation, a three-dimensional Fourier expansion of Coulomb potential is used to remove the numerical difficulty with the 1/r singularity, and it considerably reduces the computational effort. Our results agree fairly well with the previous results. It is found that the binding energies are highly correlated to the size of QDs. The quantum confinement effect of spherical QDs about biexciton is obviously larger than that of rectangular QDs when the well width is narrower than 2.0αB.  相似文献   

7.
王惠  蓝文广  林位株  莫党 《中国物理》1996,5(9):662-669
Presented in this paper are systematic studies of photoiuduced exciton bleaching dynamics in the polymers with nondegenerate ground state, such as polydiacetylene, polythiophene and polyaniline. From a three-level model, the photoexcitation and relaxation of the exciton bleaching in the polymers are simulated. The results show that the exciton bleaching decay is composed of two components, the fast component and the slow component. For the fast component, the speed of exciton bleaching decay depends on the way in which the excitons relax. When the relaxation of the exciton to the ground state is dominant, the polymers exhibit an ultrafast initial bleaching relaxation; when the relaxation of the exciton to the self-trapped exciton state is dominant, the polymers exhibit a slower initial bleaching relaxation than that in the former case, For the slow component, the exciton bleaching decay is due to the relaxation of the self-trapped excitons to the ground state. Using femtosecond time-resolved pump-probe technology, we measured the relaxation dynamics of the photoinduced exciton bleaching in the emeraldine base form of polyaniline. Fitting the experimental data to the theoretical model indicates that the fast component arises from the relaxation of excitons to the ground state (~100fs) and the slow component arises from the relaxation of self-trapped excitons to the ground state (~30 ps).  相似文献   

8.
Two-dimensional(2D)2H-MoTe_2 is a promising semiconductor because of its small bandgap,strong absorption,and low thermal conductivity.In this paper,we systematically study the optical and excitonic properties of atomically thin 2H-MoTe_2(1–5 layers).Due to the fact that the optical contrast and Raman spectra of 2H-MoTe_2 with different thicknesses exhibit distinctly different behaviors,we establish a quantitative method by using optical images and Raman spectra to directly identify the layers of 2H-MoTe_2 thin films.Besides,excitonic states and binding energy in monolayer/bilayer 2H-MoTe_2 are measured by temperature-dependent photoluminescence(PL)spectroscopy.At temperature T=3.3 K,we can observe an exciton emission at~1.19 eV and trion emission at~1.16 eV for monolayer 2H-MoTe_2.While at room temperature,the exciton emission and trion emission both disappear for their small binding energy.We determine the exciton binding energy to be 185 meV(179 meV),trion binding energy to be 20 meV(18 me V)for the monolayer(bilayer)2H-MoTe_2.The thoroughly studies of the excitonic states in atomically thin 2H-MoTe_2 will provide guidance for future practical applications.  相似文献   

9.
A temperature-dependent photoluminescence measurement is performed in CdSe/ZnSe quantum dots with a ZnCdSe quantum well.We deduce the temperature dependence of the exciton linewidth and peak energy of the zero-dimensional exciton in the quantum dots and two-dimensional exciton in the CdSe wetting layer.The experimental data reveal a reduction of homogeneous broadening of the exciton line in the quantum dots in comparison with that in the two-dimensional wetting layer,which indicates the decrease of exciton and optical phonon coupling in the CdSe quantum dots.  相似文献   

10.
Size-dependence of optical properties and energy relaxation in CdSe/ZnS quantum dots (QDs) were investigated by two-colour femtosecond (fs) pump-probe (400/800 nm) and picosecond time-resolved photoluminescence (ps TRPL) experiments. Pump-probe measurement results show that there are two components for the excited carriers relaxation, the fast one with a time constant of several ps arises from the Auger-type recombination, which shows almost particle sizeindependence. The slow relaxation component with a time constant of several decades of ns can be clearly determined with ps TRPL spectroscopy in which the slow relaxation process shows strong particle size-dependence. The decay time constants increase from 21 to 34 ns with the decrease of particle size from 3.2 to 2.1 nm. The room-temperature decay lifetime is due to the thermal mixing of bright and dark excitons, and the size-dependence of slow relaxation process can be explained very well in terms of simple three-level model.  相似文献   

11.
The binding energy of an exciton in a wurtzite GaN/GaAlN strained cylindrical quantum dot is investigated theoretically.The strong built-in electric field due to the spontaneous and piezoelectric polarizations of a GaN/GaAlN quantum dot is included.Numerical calculations are performed using a variational procedure within the single band effective mass approximation.Valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions.The exciton oscillator strength and the exciton lifetime for radiative recombination each as a function of dot radius have been computed.The result elucidates that the strong built-in electric field influences the oscillator strength and the recombination life time of the exciton.It is observed that the ground state exciton binding energy and the interband emission energy increase when the cylindrical quantum dot height or radius is decreased,and that the exciton binding energy,the oscillator strength and the radiative lifetime each as a function of structural parameters (height and radius) sensitively depend on the strong built-in electric field.The obtained results are useful for the design of some opto-photoelectronic devices.  相似文献   

12.
We employ photoluminescence (PL) and time-resolved PL to study exciton localization effect in InGaN epilayers.By measuring the exciton decay time as a function of the monitored emission energy at different temperatures,we have found unusual behaviour of the energy dependence in the PL decay process. At low temperature, the measured PL decay time increases with the emission energy. It decreases with the emission energy at 200K, and remains nearly constant at the intermediate temperature of 12OK. We have studied the dot size effect on the radiative recombination time by calculating the temperature dependence of the exciton recombination lifetime in quantum dots, and have found that the observed behaviour can be well correlated to the exciton localization in quantum dots. This suggestion is further supported by steady state PL results.  相似文献   

13.
We theoretically analyze the steady state emission spectrum and transient temporal dynamics in a coupled biexciton quantum dot(QD)–cavity system. For steady state, a phonon-assisted biexciton–exciton cascade model under continuous wave(CW) excitation is presented to explain the asymmetric QD–cavity emission spectrum intensities(intensities of cavity,exciton, and biexciton emission peak) in off-resonance condition. Results demonstrate that the electron–phonon process is crucial to the asymmetry of emission spectrum intensity. Moreover the transient characteristics of the biexciton–exciton cascade system under pulse excitation show abundant nonlinear temporal dynamic behaviors, including complicated oscillations which are caused by the four-level structure of QD model. We also reveal that under off-resonance condition the cavity outputs are slightly reduced due to the electron–phonon interaction.  相似文献   

14.
The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructures) containing large-scale random-potential fluctuations was studied. The study dealt with the properties of an exciton whose photoexcited electron and hole are spatially divided between the neighboring quantum wells under density variation and at temperatures of down to 0.5 K. We investigated domains ∼1 μm in size, which act as macroscopic exciton traps. Once the resonance laser pump power reaches a certain threshold, a very narrow delocalized exciton line appears (with a width less than 0.3 meV), which grows strongly in intensity with increasing pump power and shifts toward lower energies (by approximately 0.5 meV) in accordance with the exciton buildup in the lowest state in the domain. As the temperature increases, this spectral line disappears in a nonactivated manner. This phenomenon is assigned to Bose condensation occurring in the quasi-two-dimensional system of interwell excitons. The critical exciton density and temperature were determined within the temperature interval studied (0.5 to 3.6 K), and a phase diagram specifying the exciton condensate region was constructed. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 1, 2004, pp. 168–170. Original Russian Text Copyright ? 2004 by Dremin, Larionov, Timofeev.  相似文献   

15.
The ultrafast carrier relaxation processes in CdTe quantum dots are investigated by femtosecond fluorescence upconversion spectroscopy.Photo-excited hole relaxing to the edge of the forbidden gap takes a maximal time of ~ 1.6 ps with exciting at 400 nm,depending on the state of the photo-excited hole.The shallow trapped states and deep trap states in the forbidden gap are confirmed for CdTe quantum dots.In addition,Auger relaxation of trapped carriers is observed to occur with a time constant of ~ 5 ps.A schematic model of photodynamics is established based on the results of the spectroscopy studies.Our work demonstrates that femtosecond fluorescence up-conversion spectroscopy is a suitable and effective tool in studying the transportation and conversion dynamics of photon energy in a nanosystem.  相似文献   

16.
We investigate the decay process of photoelectrons from a luminescent material of ZnO:Zn using a microwave dielectric spectrometry. Electrons in the conduction band are found to decay exponentially and the lifetime is 781 ns, while the time interval of decay from the maximum to half of this value is 470ns. ZnO:Zn is a green luminescent material at its central wavelength of 510 nm. Compared to the decay of electrons in the conduction band, the decay process of the luminescence is faster, and the time interval of decay from the maximum to half of the maximum is about 100 ns. We believe that the mechanism of the ZnO:Zn visible luminescence is recombination luminescence, and find that our theoretical simulation is in agreement with the experimental results.  相似文献   

17.
刘瑞斌  邹炳锁 《中国物理 B》2011,20(4):47104-047104
Atoms under optical and magnetic trapping in a limited space at a very low temperature can lead to Bose-Einstein condensation (BEC),even in a one-dimensional (1D) optical lattice. However,can the confinment of dense excitons in a 1D semiconductor microstructure easily reach the excitonic BEC A lightly Mn(Ⅱ)-doped ZnO nanowire under a femtosecond laser pulse pump at room temperature produces single-mode lasing from coherent bipolaronic excitons,which is much like a macroscopic quantum state due to the condensation of the bipoaronic excitons if not real BEC. In this process,longitudinal biphonon binding with the exciton plays an important role. We revisit this system and propose possibility of bipolaronic exciton condensation. More studies are needed for this condensation phenomenon in 1D microcavity systems.  相似文献   

18.
杨少鹏  周娴  傅广生  李晓苇  田晓东  韩理 《中国物理》2005,14(12):2503-2506
In recent years, the formate ion (HCO2^-) as a kind of hole-to-electron converter has attracted much attention of photographic researchers. The formate ions can trap photo-generated holes, eliminate or reduce the electron loss caused by electron-hole recombination in latent image formation process. Through the hole-to-electron conversion, it can also release an extra electron or electron carrier, improving photosensitivity. In this paper the microwave absorption and dielectric spectrum detection technique is used to detect the time evolution behaviour of free photoelectrons generated by 35ps laser pulses in cubic AgCl emulsions doped with formate ions. The influence of different doping conditions of formate ions on the photoelectron decay kinetics of AgC1 is analysed. It is found that when the HCO2^- content is 10^-3mol/mol Ag and the doping position is 90% the electron decay time and lifetime reach their maxima due to the efficient trap of holes by formate ions.  相似文献   

19.
Aiming to achieve InAs quantum dots(QDs) with a long carrier lifetime,the effects of Sb component in cap layers on the band alignment of the InAs/GaAsSb QDs have been studied.InAs QDs with high density and uniformity have been grown by molecular beam epitaxy.With increasing Sb composition,the InAs/GaAsSb QDs exhibit a significant redshift and broadening photoluminescence(PL).With a high Sb component of 22%,the longest wavelength emission of the InAs/GaAs0.78Sb0.22 QDs occurs at 1.5 μm at room temperature.The power-dependence PL measurements indicate that with a low Sb component of 14%,the InAs/GaAs0.86Sb0.14 QDs have a type-Ⅰ and a type-Ⅱ carrier recombination processes,respectively.With a high Sb component of 22%,the InAs/GaAs0.78Sb0.22 QDs have a pure type-Ⅱ band alignment,with three type-Ⅱ carrier recombination processes.Extracted from time-resolved PL decay traces,the carrier lifetime of the InAs/GaAs0.78Sb0.22 QDs reaches 16.86 ns,which is much longer than that of the InAs/GaAs0.86Sb0.14 QDs(2.07 ns).These results obtained here are meaningful to realize high conversion efficiency intermediate-band QD solar cells and other opto-electronic device.  相似文献   

20.
This paper studies the size dependence of biexciton binding energy in single quantum dots (QDs) by using atomic force microscopy and micro-photoluminescence measurements. It finds that the biexciton binding energies in the QDs show ``binding' and ``antibinding' properties which correspond to the large and small sizes of QDs, respectively. The experimental results can be well interpreted by the biexciton potential curve, calculated from the exciton molecular model and the Heitler--London method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号