首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
激光捕获技术及其发展   总被引:1,自引:1,他引:0  
霍鑫  潘石  孙伟 《光学技术》2006,32(2):311-315
激光捕获技术是利用光辐射力来捕捉、移动和操纵微粒的先进技术。光镊即单光束梯度力光阱是通过在高度会聚的激光束束腰附近所产生的极高的场强梯度来形成皮牛顿量级的力,可以三维地捕获和操纵微小粒子。阐述了激光捕获技术的模型和原理以及系统的基本结构;追踪了激光捕获技术的最新研究进展;介绍了非高斯型光阱、光纤光阱和全息光镊等几种特殊形式,并分析了每种形式的特点。展望了激光捕获技术的发展前景。  相似文献   

2.
Nanometre-scale particles can be manipulated using optical tweezers, but cannot be directly observed. We present a simple method that nanoparticles can be directly observed using optical tweezers combined with dark field microscopy. A laser beam perpendicular to a tightly focused laser beam for trap illuminates specimen and does not enter objective, nanoparticles in focal plane all can be directly observed in dark field because of light scattering. It is implemented that the polystyrene beads of diameter lOOnm can be directly observed and trapped.  相似文献   

3.
激光捕获技术是利用光辐射力来捕捉、移动和操纵微粒的先进技术。飞秒光镊在实现粒子微纳操纵的同时还伴随着非线性现象的发生。阐述了飞秒光镊的模型和原理以及系统的各种结构形式,包括单光束梯度力光阱、贝塞耳光阱、双光束光纤光阱和冲击波光阱几种形式,并分析了每种形式的特点。  相似文献   

4.
孙巍  王义遒  高崇明 《中国物理》2000,9(11):855-860
We report the construction of an optical tweezers system and the results of the trapping and the moving of living algal cells. Experimental study on trapping polystyrene spheres demonstrates the effects of the system parameters on the trap. The trapping forces on dielectric spheres are calculated using Ashkin's ray-optics model. The result shows that an objective with higher numerical aperture can build a more stable trap along axial direction than an objective with lower numerical aperture, though their transverse trapping forces are on the same order.  相似文献   

5.
Optical trapping, where microscopic particles are trapped and manipulated by light is a powerful and widespread technique, with the single-beam gradient trap (also known as optical tweezers) in use for a large number of biological and other applications. The forces and torques acting on a trapped particle result from the transfer of momentum and angular momentum from the trapping beam to the particle. Despite the apparent simplicity of a laser trap, with a single particle in a single beam, exact calculation of the optical forces and torques acting on particles is difficult. Calculations can be performed using approximate methods, but are only applicable within their ranges of validity, such as for particles much larger than, or much smaller than, the trapping wavelength, and for spherical isotropic particles. This leaves unfortunate gaps, since wavelength-scale particles are of great practical interest because they are readily and strongly trapped and are used to probe interesting microscopic and macroscopic phenomena, and non-spherical or anisotropic particles, biological, crystalline, or other, due to their frequent occurance in nature, and the possibility of rotating such objects or controlling or sensing their orientation. The systematic application of electromagnetic scattering theory can provide a general theory of laser trapping, and render results missing from existing theory. We present here calculations of force and torque on a trapped particle obtained from this theory and discuss the possible applications, including the optical measurement of the force and torque.  相似文献   

6.
王玥  梁言生  严绍辉  曹志良  蔡亚楠  张艳  姚保利  雷铭 《物理学报》2018,67(13):138701-138701
传统的光镊技术使用单个物镜同时进行光学捕获与显微成像,使得捕获与成像区域被限制在物镜焦平面附近,无法同时观察到沿光轴方向(即Z向)捕获的多个微粒.本文提出一种轴平面(XZ平面)GerchbergSaxton迭代算法来产生沿轴向分布的多光阱阵列,将轴平面成像技术与光镊结合,实现了沿轴向对二氧化硅微球的多光阱同时捕获与实时观测.通过视频分析法测量了多个二氧化硅微球在轴向光镊阵列中的布朗运动,并标定了光阱刚度.本文提出的轴向多光阱微粒捕获与实时观测技术为光学微操纵提供了一个新的观测视角和操纵方法,为生物医学、物理学等相关领域研究提供了一种新的技术手段.  相似文献   

7.
The high precision calibration of optical trap stiffness is the foundation of the weak force measurement in an optical tweezers system. And the accuracy of the trap stiffness measurement is limited by the bandwidth of the acquisition system. In this article, such an influence is analyzed and discussed. The stiffness measuring process using an acquisition system with a finite acquisition time is numerically simulated by using Monte-Carlo method. Then the simulated results are analyzed by thermal motion analysis method to deduce the trap stiffness for different trapping system and for measuring systems with different acquisition time. As a comparison the power spectrum analysis method is used to study the thermal motion of the bead and to compute the trap stiffness for the same acquisition system, from which it is concluded that the bandwidth of the acquisition system is determined by its acquisition time, not the sampling frequency. The influence of the finite acquisition time or the limited bandwidth on the trap stiffness measurement is discussed. The numerical simulation shows that the measured position, which is here the average position within the acquisition time, shifts to the trap center due to the trapping force, which gives an alternative interpretation for the deviation of the measured stiffness from the true trap stiffness.  相似文献   

8.
We propose and demonstrate a novel single fiber optical tweezer based on a graded-index multimode fiber(GIMMF), which works with a free length GIMMF(30 cm). We achieve a three-dimensional stable trap of yeast cells by using the GIMMF optical tweezers. Compared with the single-mode fiber optical tweezers,the GIMMF optical tweezers possess large optical trapping forces. Owing to the freedom of the GIMMF length,the fabrication of the GIMMF optical tweezers is simple, repeatable, and highly efficient. The GIMMF tweezers have the penitential to become a new member of the single fiber optical tweezers family and have a wide range of applications in the medical and biological cytology fields.  相似文献   

9.
An optical manipulation system based on optofluidic microbubble resonators(MBR) is proposed. As the high-Q whispering gallery modes(WGMs) are excited in an MBR, the buildup of the field intensity inside the resonator is large enough to trap nanoscale particles. The optical gradient forces generated by the WGMs with different radial orders are investigated numerically. The negative effect of the resonance detuning induced by the particles is taken into account to investigate the optical gradient forces exerting on the particles. By the stability analysis, the WGMs with high radial orders show a better trapping stability under Brownian motion since most of the optical fields reside within the water core.  相似文献   

10.
A model of optical tweezers which can trap a chain of Rayleigh particles is proposed by using two counter-propagating equal highly focused radial polarized beams. Calculations show that a multifocal distribution along the optical axis is formed and the scattering force is equal to zero in the total focal filed, consequently a chain of metallic Rayleigh particles can be stably trapped. The trap force and the trap stiffness using two counter-propagating Radially-polarized beams are larger than those using two counter-propagating linearly-polarized beams. The trapping stability is calculated and analyzed in detail. The trapping number of particles in a trapping chain can be controlled by adjusting the aperture angle of the objective and the parameters of the filter used in the proposed trap system.  相似文献   

11.
Optical tweezers, a simple and robust implementation of optical micromanipulation technologies, have become a standard tool in biological, medical and physics research laboratories. Recently, with the utilization of holographic beam shaping techniques, more sophisticated trapping configurations have been realized to overcome current challenges in applications. Holographically generated higher‐order light modes, for example, can induce highly structured and ordered three‐dimensional optical potential landscapes with promising applications in optically guided assembly, transfer of orbital angular momentum, or acceleration of particles along defined trajectories. The non‐diffracting property of particular light modes enables the optical manipulation in multiple planes or the creation of axially extended particle structures. Alongside with these concepts which rely on direct interaction of the light field with particles, two promising adjacent approaches tackle fundamental limitations by utilizing non‐optical forces which are, however, induced by optical light fields. Optoelectronic tweezers take advantage of dielectrophoretic forces for adaptive and flexible, massively parallel trapping. Photophoretic trapping makes use of thermal forces and by this means is perfectly suited for trapping absorbing particles. Hence the possibility to tailor light fields holographically, combined with the complementary dielectrophoretic and photophoretic trapping provides a holistic approach to the majority of optical micromanipulation scenarios.  相似文献   

12.
Optical tweezers with a low numerical aperture microscope objective is used to manipulate the microspheres at the water-air interface. In this letter, we determine the optimal optical trap for the lateral manipulation of microspheres at a water-air interface. The experimental results show that the trapping force is influenced by the expansion of the trapping beam at the back aperture of the objective. The optimal filling ratio of 0.65 is suggested for lateral optical manipulation at the water-air interface. The lateral trapping forces at the water-air interface are theoretically investigated with the ray-optics model. The numerical results show that the lateral trapping forces can be changed by shrinking the diameter of the trapping laser beam. The numerical results are in accordance with the experimental results.  相似文献   

13.
霍鑫  潘石  吴世法 《光学技术》2007,33(2):292-295
光镊技术,又称光学捕获技术,它是利用光的辐射压力来捕获和操纵包括电介质颗粒、生物细胞及生物大分子在内的微小粒子的。近场光镊技术利用近场光学倏逝场随距离急剧衰减的特征,可显著地降低捕获粒子的尺寸,实现纳米捕获。追踪了近场光镊技术的最新进展,包括全内反射相干倏逝场、近场光学镀膜光纤探针尖、激光照明金属探针尖和聚焦倏逝场用于近场光学捕获,并对其进行了比较,分析了它们存在的主要问题和未来发展方向。  相似文献   

14.
基于动量守恒原理,结合麦克斯韦应力张量和三维时域有限差分方法,建立了近场空间内激光光镊对纳米微粒的光阱力计算模型.分析了光纤探针型近场光镊的近场分布以及操作纳米微粒时各轴向光阱力的分布情况,并探讨了光纤探针尖端的捕获尺寸、捕获位置和操作稳定性.结果表明:微粒应处于光纤探针针尖的近场空间内才可实现稳定可靠的纳米操作,不同尺寸的微粒具有不同的捕获效果,且随初始位置的不同微粒的捕获位置亦不同.计算结果为激光近场光镊纳米操作装置的设计和制造提供了理论基础.  相似文献   

15.
We show that dual line optical tweezers provides a convenient and dynamically reconfigurable approach for trapping and transport of low refractive index microscopic particles. By varying the spacing between the two line tweezers, particles of varying sizes could be trapped. Further, simultaneous rotation of the dual line tweezers could be used for controlled rotation of the trapped low-index particles. The transverse trapping force and the efficiency of the trap measured along the direction perpendicular to the line tweezers are in very good agreement with the theoretically estimated value. PACS 07.60.-j; 87.80.Cc; 87.80.Fe  相似文献   

16.
运用基于T矩阵算法的开源光镊计算工具包对可能影响光镊力的微粒尺寸、相对折射率以及光束模式进行了研究,计算结果表明,这三方面因素都会对光镊力产生显著影响,微粒直径与波长相等、相对折射率尽可能大时选择恰当的光束模式能够产生最佳的光镊捕获效果.  相似文献   

17.
The efficiency of an optical trap is limited by its axial strength. Light focused by oil-immersion objectives provides stronger traps but suffers from spherical aberrations, thus restricting the axial stability and working distance. By changing the refractive index of the immersion media we compensate spherical aberrations and measure axial trapping strengths at least twice as large as previously reported. Moreover, the spherical aberrations can be compensated at any desired depth. The improved trapping efficiency implies significantly less heating of the particles, thus diminishing previously published concerns about using gold nanoparticles as handles for optical manipulation.  相似文献   

18.
光镊利用强会聚激光对微粒产生的梯度力来捕获微粒,可以进行无损、远程操控,同时具有皮牛精度的测力特性,已经成为物理学、生命科学和胶体化学等研究领域中不可缺少的研究工具。光镊效应可以表现微小的光子动量和角动量,是物理学的重要教学工具。本文根据高斯光束传播和变换规律,设计具有稳定捕获性能的最小化光镊,并给出了典型参数。光镊系统由捕获激光、光束耦合系统、倒置生物显微镜和大数值孔径物镜组成,成像系统由物镜、摄影目镜和CCD相机组成。本光镊系统具有紧凑特性,同时通过保持物镜后瞳充满度来实现稳定捕获。在该最小光镊系统上,可以根据用户需求增加光镊阱位操控系统、刚度调节系统和其他辅助设备以满足不同操控要求,可以很好地满足科研和教学需求。  相似文献   

19.
一种用于细胞操作的单光纤光镊研究   总被引:2,自引:2,他引:0  
采用一种抛物线形光纤针作为基本器件,设计制作了单光纤光镊系统.用时域有限差分(Finite Difference Time Domain,FDTD)的方法仿真了抛物线型光纤探针的出射场,并在稳态场下通过对麦克斯韦应力张量积分求出不同介质球半径和折射率情况下,介质球受到的横向和纵向光作用力.实验中此单光纤光镊系统实现了对水中酵母细胞的空间捕获,并且结合两个抛物线形光纤针实现了酵母细胞在两个光势阱中的转移交接.这种单光纤光镊系统结构简单、紧凑,操纵灵活,便于调整.可以适应更多的生物细胞和生物分子的光微操作需求.  相似文献   

20.
Optical forces acting on a sphere were experimentally analyzed to investigate the single-beam fiber optic trap using a cleaved optical fiber or a lensed optical fiber. A stable optical trap could be created at the point where the x-directed (horizontal) optical forces were precisely balanced, and the vector sum of axial and transverse forces acting on a sphere gave a restoring force directed back to the stable point. As compared with other embodiments, such as a single-beam gradient trap (optical tweezers) and dual-beam fiber optical traps, this single-beam fiber optic trapping was most economical, much simpler to operate, and required relatively low optical power to capture an object. Furthermore, a lensed optical fiber could easily trap and manipulate a micro object in comparison with a cleaved optical fiber because of the strong transverse optical confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号