首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new procedure for the design and simulation of a Radio Frequency Quadrupole (RFQ) accelerator has been developed at the Argonne National Laboratory. This procedure is integrated with the beam dynamics design code DESRFQ and the simulation code TRACK, which are based on three-dimensional field calculations and the particle-in-cell mode beam dynamics simulations. This procedure has been applied to the development of a 162.5 MHz CW RFQ which is capable of delivering a 10 mA proton beam for the Accelerator Driven System (ADS) of the CAS. The simulation results show that this RFQ structure is characterized by the stable values of the beam acceleration efficiency for both the zero current beam and space charge dominated beam. For an average beam current of 10 mA, there is no transverse rms emittance growth, the longitudinal rms emittance at the exit of RFQ is low enough and there is no halo formation. The beam accelerated in the RFQ could be accepted easily and smoothly by the following super-conducting linear accelerator.  相似文献   

2.
The ADS (accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences. The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles (RFQ) operating in CW mode. To test the feasibility of this physical design, a new Fortran code for RFQ beam dynamics study, which is space charge dominated, was developed. This program is based on Particle-In-Cell (PIC) technique in the time domain. Using the RFQ structure designed for the CADS project, the beam dynamics behavior is performed. The well-known simulation code TRACK is used for benchmarks. The results given by these two codes show good agreements. Numerical techniques as well as the results of beam dynamics studies are presented in this paper.  相似文献   

3.
采用多粒子跟踪程序BEAMPATH 对SSC-LINAC 重离子RFQ 直线加速器进行动力学模拟,分别对RFQ 的接受度、高频特性、束流稳定性、空间电荷效应等进行了分析。该RFQ具有很大的纵向接受度,有利于束流在RFQ中的传输;高频特性研究表明,翼间电压设定在理论值以上时,该RFQ都能保持较好的束流特性;束流稳定性分析结果表明,该RFQ具有很大的束流失配容忍度;空间电荷效应研究表明,当束流强度低于0.5 mA时,束流传输不受影响。综合研究结果表明,53.667 MHz重离子RFQ具有较好的动力学特性,满足SSC-LINAC直线加速器的设计要求。The RFQ beam dynamics of a heavy ion linac was investigated in this paper and the BEAMPATH code was employed in this study. The main research was focused on the beam performances depending on longitudinal acceptance, RF properties, beam instability and space charge effect. The RFQ has large longitudinal acceptance in design, which brings the beam performances well. In the RF parameter study, the beam can keep good transmission in the acceleration even the vane voltage is larger than the theoretical value. It is also shown that the RFQ has a large robustness for the mismatch of the input beam by the analysis of the beam instability.Furthermore, the beam evolution is independent on the space charge effect when the beam current is less than 0.5 emA. The preliminary analysis of the beam dynamics shows that the 53.667 MHz heavy ion RFQ has a promising performance, which meets the requirements of SSC-LINAC.  相似文献   

4.
A new linear accelerator system, called the SSC-Linac injector, is being designed at HIRFL (the heavy ion research facility of Lanzhou). As part of the SSC-Linac, the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles, a re-buncher and a diagnose box. The total length of this segment is about 1.75 m. The beam dynamics simulation in MEBT has been studied using the TRACK 3D particle-in-cell code, and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces, and that most of the particles can be captured by the final sector focusing cyclotron for further acceleration. The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail, and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.  相似文献   

5.
The progress of the Separated Function RFQ (SFRFQ) accelerator, which can raise the field gradient of acceleration while maintaining the transverse focusing power sufficient for high current beam, is presented. In order to demonstrate the feasibilities of the novel accelerator, a prototype cavity was designed and constructed. Correspondingly, a code SFRFQCODEV1.0 was developed specially for cavity design and beam dynamics simulation. The prototype cavity will be verified as a post-accelerator for ISR RFQ-1000 (Integral Split Ring RFQ) and  相似文献   

6.
The progress of the Separated Function RFQ (SFRFQ) accelerator, which can raise the field gradient of acceleration while maintaining the transverse focusing power sufficient for high current beam, is presented. In order to demonstrate the feasibilities of the novel accelerator, a prototype cavity was designed and constructed. Correspondingly, a code SFRFQCODEV1.0 was developed specially for cavity design and beam dynamics simulation. The prototype cavity will be verified as a post-accelerator for ISR RFQ-1000 (Integral Split Ring RFQ) and accelerate O+ from 1 MeV to 1.6 MeV. To inject a higher current oxygen beam for the prototype cavity, the beam current of ISR RFQ-1000 was upgraded to 2 mA. The status of high power and beam test preparation for the prototype cavity are presented in this paper.  相似文献   

7.
A 52 MHz Radio Frequency Quadrupole(RFQ)linear accelerator(linac)is designed to serve as an initial structure for the SSC-Linac system(injector into Separated Sector Cyclotron).The designed injection and output energy are 3.5 keV/u and 143 keV/u,respectively.The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell(PIC)code BEAMPATH.Simulation results show that this RFQ structure is characterized by stable values of beam transmission efficiency(at least 95%)for both zerocurrent mode and the space charge dominated regime.The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions,and could easily be accepted by Drift Tube Linac(DTL).The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.  相似文献   

8.
The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper.The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.  相似文献   

9.
中国科学院近代物理研究所在CSR-LINAC项目中设计了一台108.48 MHz的IH型RFQ直线加速器。该RFQ可以将质荷比为3~7的离子从4 keV/u加速到300 keV/u。在完成束流动力学设计的基础上,主要针对RFQ腔体的高频电磁设计展开了研究,同时利用了电磁场仿真和束流动力学模拟来研究腔体的四极场不平整度和二极场及其动力学影响。未经调谐的情况下,腔体的谐振频率为108.15 MHz,腔体空载品质因子Q0为5 910,腔体功耗为123 kW。通过在支撑板两端增加底切的设计,将腔体的四极场不平整度由-21%~ 12%优化至±2.5%,满足了束流动力学要求。腔体的二极场为-3%~ -2.2%,使得束流在垂直方向小幅振荡,RFQ的垂直方向接受度减小5%。为了保证功率馈入时反射较小,将耦合器设置在临界耦合状态,耦合面积为940 mm2。为了补偿腔体的频率偏差和漂移,设计了调谐量分别为707和132 kHz的固定调谐器和可动调谐器。The 108.48 MHz IH type RFQ for CSR-LINAC project is under design at Institute of Modern Physics, Chinese Academy of Sciences. This RFQ can accelerate heavy ions with mass to charge ratio of 3~7 from 4 keV/u to 300 keV/u. According to the beam dynamics requirement, the RF structure design has been finished. The quadrupole field unflatness and dipole field of the cavity were studied by electromagnetic simulation and beam dynamics simulation. The frequency of the cavity without tuning is 108.15 MHz, the Q0 of the cavity is 5910, and the RF power loss is 123 kW. The quadrupole field unflatness of ±2.5%,which was -21%~12% before optimizing, is achieved to meet dynamics requirement through the undercuts in cavity supporters. The dipole field of -3%~ -2.2% causes the oscillation of the beam center and acceptance reduction of 5%. The power coupler must be in critical coupling state with the coupling area of 940 mm2 for minimum reflection coefficient. The tuners, consist of coarse and fine tuners with frequency shift of 707 and 132 kHz respectively, is used for tuning of frequency deviation of the cavity.  相似文献   

10.
S. V. L. S. Rao  P. Singh 《Pramana》2010,74(2):247-259
A 3 MeV, 30 mA radiofrequency quadrupole (RFQ) accelerator has been designed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC, India. The beam and cavity dynamics studies were performed using the computer codes LIDOS, TOUTATIS, SUPERFISH and CST microwave studio. We have followed the conventional design technique with slight modifications and compared that with the equipartitioned (EP) type of design. The sensitivity of the RFQ to the variation of input beam Twiss-Courant parameters and emittance has also been studied. In this article we discuss both design strategies and the details of the 3D cavity simulation studies.  相似文献   

11.
Beam dynamics and RF design have been performed of a new type trapezoidal IH-RFQ operating at 104 MHz for acceleration of 14C+ in the framework of RFQ based 14C AMS facility at Peking University. Low energy spread RFQ beam dynamics design was approached by the method of internal discrete bunching. 14C+ will be accelerated from 40 keV to 500 keV with the length of about 1.1 m. The designed transmission efficiency is better than 95% and the energy spread is as low as 0.6%. Combining the beam dynamics design, a trapezoidal IH-RFQ structure was proposed, which can be cooled more easily and has better mechanical performance than traditional RFQ. Electromagnetic field distribution was simulated by using CST Microwave Studio (MWS). The specific shunt impedance and the quality factor were optimized primarily.  相似文献   

12.
Beam dynamics and RF design have been performed of a new type trapezoidal IH-RFQ operating at 104 MHz for acceleration of 14C+ in the framework of RFQ based 14C AMS facility at Peking University. Low energy spread RFQ beam dynamics design was approached by the method of internal discrete bunching. 14C+ will be accelerated from 40 keV to 500 keV with the length of about 1.1 m. The designed transmission efficiency is better than 95% and the energy spread is as low as 0.6%. Combining the beam dynamics design, a trapezoidal IH-RFQ structure was proposed, which can be cooled more easily and has better mechanical performance than traditional RFQ. Electromagnetic field distribution was simulated by using CST Microwave Studio (MWS). The specific shunt impedance and the quality factor were optimized primarily.  相似文献   

13.
SFRFQ (Separated Function Radio Frequency Quadrupoles) accelerator is a new post accelerator of RFQ (Radio Frequency Quadrupoles) type, which has been developed since the beginning of the 1990s at Peking University. In order to demonstrate the possibility of the SFRFQ, a prototype cavity has been designed.A special dynamics design method has been proposed to avoid the sparking problem and decrease the energy spread at the exit of SFRFQ. It consists of two aspects: the asymmetry structure design for transverse focusing and the inner buncher design for longitudinal bunching. This allows the improvement of the beam properties without increasing the cavity length. The simulation results show that the energy spread can be substantially reduced by using the inner buncher in the SFRFQ structure.  相似文献   

14.
乔舰  谢修璀  李德明  蒲越虎 《强激光与粒子束》2020,32(6):064004-1-064004-7
为实现质子治疗装置的国产化和小型化,基于已完成安装调试的上海先进质子治疗装置(APTR),开展质子治疗注入器系统的升级设计研究,利用PARMTEQM设计软件和快聚束策略,针对APTR同步加速器RFQ直线注入器进行动力学设计模拟。RFQ工作频率为325 MHz,流强18 mA,对从离子源引出的低能质子束流进行匹配俘获、横向聚焦、纵向聚束和预加速,引出能量为3.0 MeV。通过优化预注入器RFQ动力学设计方案和极头参数,有效避免参数共振,减小束流损失,使其整体传输效率达到98.0%,在水平和垂直方向上的发射度增长分别为1.2%和3.3%,出口束流满足下一级腔体的注入需求,开展设计模拟验证和相关冗余度分析,为质子同步加速器的治疗设备和直线注入系统提供参照依据。  相似文献   

15.
The ABC code is an optimization program for the development of matching channels and dynamical matchers in radio frequency quadrupole (RFQ) structures, and a new approach to this code to define the geometry of the radial matching section of the RFQ has been developed. This approach is based on the application of the numerical optimization step by step. This optimization is intended to search for the initial matching condition of a beam, the optimization of parameters of a cell of the channel on given characteristic parameters and traces of a beam in linear channels in both forward and backward directions. To further verify the results of the optimization, multi-particle beam dynamics simulations have been carried out using the BEAMPATH and TRACK codes. The result of the beam dynamics simulation shows that the optimization result of the ABC code is reasonable and this approach provides an opportunity to redesign the structure of the radial matching section of the RFQ.  相似文献   

16.

A mini-vane four-rod radio frequency quadruple (RFQ) accelerator has been built for neutron imaging. The RFQ will operate at 201.5 MHz, and its length is 2.7 m. The original electric field distribution along the electrodes is not flat. The resonant frequency needs to be tuned to the operating value. And the frequency needs to be compensated for temperature change during high power RF test and beam test. As tuning such a RFQ is difficult, plate tuners and stick tuners are designed. This paper will present the tuners design, the tuning procedure, and the RF properties of the RFQ.

  相似文献   

17.
傅世年 《中国物理 C》2002,26(8):870-875
强流质子加速器需要采用分段共振耦合RFQ作为其低能加速结构,为减少束流损失,RFQ加速器必须达到所要求的场分布.针对共振耦合结构的特殊性,在RFQ传输线模型的理论基础上,在一台RFQ冷模型上进行了场调谐的实验研究,获得了满意的实验结果.同时,也验证了作者用LabVIEW编写的RFQ场调谐程序的正确性.  相似文献   

18.
A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending magnet and an extra multi-harmonic buncher. The total length of this segment is about 7 meters. The beam dynamics in this LEBT has been studied using three-dimensional PIC (particle-in-cell) code BEAMPATH. The simulation results show that the continuous beam from the ion source is first well analyzed by a charge-to-mass selection system, and the beam of the selected charge-to-mass ratio is then efficiently pre-bunched by a multi-harmonic buncher and optimally matched into the RFQ (radio frequency quadrupole) for further acceleration. The principles and effects of the solenoid collimation channel are discussed, and it could limit the beam emittance by changing the aperture size.  相似文献   

19.
中国科学院近代物理研究所正在进行等离子体直接注入方案的研究,以便为重离子物理研究提供稳定可靠的高流强束流。由于工作频率较低,用于等离子体直接注入方案的RFQ腔体采用了适合于低频的四杆型结构。在完成束流动力学设计的前提下,研究了RFQ腔体支撑臂的各参数对并联阻抗的影响。由于突出电极之间存在着一定大小的电容,会对腔体的性能产生影响,为使腔体达到最优化的设计,进行了突出电极对并联阻抗及场平整性的影响的研究,并给出了突出电极的取值范围。  相似文献   

20.
为了提高兰州重离子加速器冷却储存环(HIRFL-CSR)的运行效率、改善加速器输出束流品质,并实现几个加速装置分时供束,提高整个重离子加速装置的利用率,特为(HIRFL-CSR)增建一台新的注入器--CSRLINAC。在108.48 MHz的RFQ之后的CSR-LINAC主加速段,主要由一台108.48 MHz和两台216.96 MHz的IH型漂移管直线加速器组成,用于加速荷质比为1/8.5~1/3之间的重离子,其最大的束流流强为3 mA,并将粒子从0.3 MeV/u加速到3.71 MeV/u。运用KONUS动力学原理,在满足设计指标的情况下,首先利用TraceWin程序进行中能束线MEBT设计,后针对高频腔体设计和束流匹配的基本参数的系列讨论,特别是对CSR-LINAC的中能束流匹配线、参数选择和IH型KONUS结构的漂移管直线加速器进行设计模拟优化。最终得出,在保证腔体设计指标和95.3%的传输效率的情况下,该紧凑型直线加速结构经过三个腔体的加速后,束流的纵向归一化均方根发射度增长仅有25%;同时发现,当流强达到3 mA时,存在空间电荷效应,导致其纵向相宽增长约25%,最大横向包络也存在16.5%的涨落。In order to improve the operation efficiency of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR), a heavy ion linac (linear accelerator) was proposed and designed as a new injector for HIRFL-CSR. Following the 108.48 MHz Radio-Frequency Quadrupole (RFQ), three tanks in total with Interdigital H-mode drift tube linac (IH-DTL) structure are installed to boost the beam energy from 0.3 to 3.71 MeV/u, and the beam current of ions with charge-to-mass ratio from 1/8.5 to 1/3 can reach to 3 mA. The first tank operatesat the same frequency as the RFQ, and the rest two operate at 216.96 MHz. The “Combined Zero-Degree Synchronous Particle Structure” (KONUS) beam dynamics was used in the beam dynamics design. The overview of the physics design on the main accelerating components, including RF design and beam dynamics design are introduced in this paper. The optimized structure design, fabrication status and simulation results are presented in this contribution. It shows that under the condition of assurance of 95.3% transmission efficiency, the normalized rms emittance is about 25%. When the beam current is up to 3 mA, owing to the space charge effect, the increase of longitudinal phase spread and transverse envelope are about 25% and 16.3%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号