首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
振动是一种普遍存在的自然现象,振动的频率分布于 10-5~10 13Hz的广阔范围内,我们所听到的声音只是频率 20~2 × 104Hz的振动.振动和人们的生活、生产密切相关,对于振动的研究和检测是必不可少的。 对于不同频率的振动,检测方法是不同的,超声波或高声频的振动,通常采用压电效应的方法;在声频范围内,通常采用电磁感应方法进行检测.由于电磁感应所得到的电讯号的强度和磁通变化率成正比,所以测到的是振动的速度,当频率很低时,电磁感应检测效率显著下降,当振动能量很小时,则无法检测. 为了将超低频振动变成电讯号,我们设计了一种光电振动检…  相似文献   

2.
对于不同频率的振动,检测方法是不同的,超声波或高声频的振动,通常采用压电效应的方法;在声频范围内,通常采用电磁感应方法进行检测。由于电磁感应所得到的电讯号的强度是和磁通变化率成正比,所以测到的是振动的速度,当频率很低时,电磁感应检测效率显著下降,当振动能量很小时,则无法检测。为了解决将超低频振动变成电讯号,我们设计了一种光电振动检测装置。它由小白炽聚光灯、稳压电源、光电池、放大器及振动体几部份组成。光电池可根据不同需要灵活选用,当检测  相似文献   

3.
周建臣  耿兴国  林可君  张永建  臧渡洋 《物理学报》2014,63(21):216801-216801
利用高速摄影技术对超疏水表面液滴振动的动态行为进行观测,研究液滴在不同频率下的振动特性. 实验发现,液滴的共振频率满足Rayleigh方程,微液滴在超疏水表面具有自由液滴的振动性质. 在80–200 Hz的驱动频率范围内,接触线出现了明显的固着-移动现象,液滴的振动频率是驱动频率的一半,液滴振动时的形变较大. 当驱动频率大于200 Hz时,接触线基本固着,液滴的振动频率近似等于驱动频率,液滴共振时的形态边缘始终有节点存在. 分析表明,液滴对外界驱动的不同响应与接触线的振荡行为和变形程度密切相关 关键词: 超疏水表面 受迫振动 共振 接触线  相似文献   

4.
孟庆林  原猛  牟宏宇  陈友元  冯海泓 《物理学报》2012,61(16):164302-164302
通过心理物理实验探讨了包络调制率(<300 Hz)和纯音载波频率(<8 kHz)对听觉时间调制检测能力的影响. 测试信号为以纯音为载波的正弦幅度调制信号, 采用二选一强迫选择法和自适应调整步长的心理物理实验方法, 测试得到不同载波频率条件下的时间调制传递函数. 实验结果表明, 包络调制率和载波频率均会对听觉的时间调制检测能力产生影响. 当载波频率低于2 kHz时, 人耳的检测能力与调制率呈单调递增趋势;当载波频率高于3.5 kHz时, 检测能力也会受到调制率的显著影响, 但没有显著的单调变化趋势. 当调制率在10-100 Hz之间时, 检测能力不随载波频率明显变化;当调制率在150-300 Hz之间时, 调制检测能力随着载波频率上升而下降, 在载波频率达到3.5 kHz时, 调制检测能力不随载波频率显著改变.  相似文献   

5.
能够按照人们的意愿控制声波的传播一直是研究者们想要解决的问题.一类由人工微结构组成的声学超材料吸引了研究者的注意,因为它具有许多天然材料所不能实现的奇特性质,例如负折射、平板聚焦和反常多普勒等.本文中,我们制备了一种二维的负质量密度声学超材料,在频率1560—5580 Hz范围内质量密度为负值,折射率在1500—5480 Hz范围内为负值,设计了一种测量多普勒效应的测试装置,测试了其在1200—6500 Hz内的多普勒效应.实验结果表明:在所制备的声学超材料负折射区域内,以声源的频率为2000 Hz为例,当声源靠近探测器时,探测器探测到的频率为1999.27 Hz,与声源相比有0.73 Hz的减小;而当声源远离探测器时,探测器探测到的频率为2000.68 Hz,与声源相比有0.68 Hz的增大,即在频率点为2000 Hz时,有明显的反常多普勒现象.对整个负区域内进行选点测量,发现在整个负区域内有宽频带的反常多普勒效应现象.  相似文献   

6.
目前理论上预期的天体引力波源在低频段的引力辐射比较丰富[1-4].另一方面,目前使用的引力波天线绝大多数是机械共振天线,这类天线的Q值大都很高(104以上),频带甚窄(当v~10HZ时,Δv≤ 0.01Hz),在对某一特定的窄带引力辐射进行探测时很容易失调[5].因此,为了更好地探测引力波,并做到容易对准和跟踪它,自然希望天线具有比较低的共振频率和能够在一定的频率范围内方便地调谐. 作者曾在扭摆天线[6]的基础上研究了一种可调谐的引力波天线[7],指出这种天线容易在1—10Hz频率范围内调谐,这正是预期的天体物理过程所辐射的引力波的频谱峰值范围. …  相似文献   

7.
近场扫描光学显微术中, 近场距离的检测和控制是需要解决的核心技术之一. 本文研究了基于DDS驱动的压电传感器, 在一个压电陶瓷片上, 电极被分成相同的两部分, 分别用于振动驱动和振幅检测. 近场扫描的光纤探针固定于此压电陶瓷片上. 振动驱动信号采用DDS, 在样品的远场时, 可以通过频率扫描得到误差在0.006 Hz以内的压电陶瓷片谐振频率驱动信号, 而当光纤探针处于样品的近场距离之内时, 压电陶瓷片的谐振频率偏离驱动信号频率, 振幅明显减小, 从而检测出近场距离. 高精度振动驱动源DDS和高灵敏度压电传感器的采用提高了检测灵敏度和工作稳定性.  相似文献   

8.
我们用最近研制成功的LMA型低频力学谱测试系统对NiTi合金马氏体相进行了在很大频率范围内(0.003~1Hz)的低频等温力学谱和温度谱的测量.我们研究的形状记忆合金NiTi(Ni 50.2 at%)试样长34 mm,直径1 mm细丝.经一定热处理,分别在333 K. 343 K和353 K做了内耗随频率的变化的测量.实验表明:频率越小,内耗越大,也就是内耗随频率减少而增大.同时我们采用阶梯升温的方法在八个温度下每个温度测量三种频率(1 Hz, 0.1 Hz, 0.01 Hz)的内耗,结果清楚地表明:不同频率下,内耗峰都出现在372 K(99℃).而且频率越低,峰高越高.这是具有相变峰的特点:相变峰的峰温不随测量频率不同而变化,相变峰高度随频率减少而增大.我们还测量了在1 Hz与0.5 Hz频率下内耗随温度的变化.本文用马氏体相的位错理论初步讨论了上述实验结果.  相似文献   

9.
激光光栅多普勒效应微小振动测量   总被引:6,自引:0,他引:6  
为了提高测量微小振动的精度和动态范围,提出一种基于激光光栅多普勒效应的微振动测量系统。通过对差拍信号的频率分析,以峰值频率比值的方法可以排除干扰获得被测振动频率,找到振动的翻转点并判断振幅的大小;推导了在翻转点附近的微小位移与电压值的关系,对于小于计数当量值的位移由测量电压得到,提高了微小振动位移的测量精度以及系统测量的最小分辨率、动态范围。实验系统的频率范围为0.5~500Hz,振幅为20~10mm,相对误差小于1%,其动态范围大于100dB。  相似文献   

10.
电感电路和电容电路在电子技术的滤波电路中有着重要作用,损耗电阻的大小是设计滤波电路参数的重要依据.人们通常在讨论电感和电容特性时,都把电感和电容当作纯电抗性元件,认为在低频段它们不存在损耗电阻,只有在10。Hz以上的高频范围内才有损耗电阻存在,事实是这样吗?事实并非如此,本文试图通过实验测试分析电感电容在10^3~10^4Hz的频率范围内它们的损耗电阻不能忽略,而且电感的损耗电阻随着频率的升高而增大,电容的损耗电阻随着频率的升高而降低.  相似文献   

11.
声子是固体物理中极为活跃的准粒子.声学声子的频率从10~9Hz一直到10~(12)Hz或10~(13)Hz,这一最高频率是由晶格结构决定的. 频率为10~9-10~(11)Hz的声子称为微波声子.产生和检测微波声子的最常用的方法是压电晶体的电磁激励,即在压电单晶薄片或压电薄膜上加上交变电磁场,使之与晶片或薄膜的厚度发生基频或谐频上的共振,从而得到京赫(1京=10~9)级的微波声子;或者把经过光学加工的晶体表面置于微波谐振腔中,利用非谐振的压电表面激励产生声子.Bommel和 Dransfeld[1]等曾用这种方法做了大量工作.1966年,Jaco-bson和Ilukor用这种方法…  相似文献   

12.
本文对中华和种之中央Bo钟的声频特性和振动方式进行了研究。利用谱对其辐射声信号进行了谱分析;利用时频分析,研究了其谱结构随时间变化情况;为了了解其频率变化及音高情况,计算了其不同时刻的瞬时平均频率。同时,通过不同位置的振动信号谱分析,重建了其在不同频率下的振动方式。  相似文献   

13.
随着全球变暖和能源危机的到来,寻找减少碳排放的可再生能源成为人类文明面临的最紧迫挑战之一.振动作为一种常见的机械运动形式,在人们的日常生活中普遍存在.利用多种原理收集振动能量将其转化为电能成为研究热点.基于接触生电和静电感应原理的摩擦纳米发电机(TENG)为收集振动能量提供了一种可行的方法.本文设计了一种接触分离式TENG.推导了TENG的电极间电压-转移电荷量-板间距离(V-Q-x)之间的关系,结合实验分析了负载电阻、振动频率等因素对其输出性能的影响关系,当振动频率为1—6 Hz时,每个工作循环内电荷的转移量几乎相同,而电压和电流随着频率的增大而增大,频率为5 Hz时,最大输出功率达到0.5 m W.运用COMSOL软件对TENG进行模拟仿真,揭示了其在接触分离过程中电势以及聚合物表面电荷密度的分布和变化规律,为高效收集振动能量的摩擦纳米发电机及自供能振动传感器设计提供理论与实践支撑.  相似文献   

14.
基于未来卫星间激光干涉任务的需求,介绍了一种基于迈克耳孙光纤干涉仪稳频的1064 nm激光稳频系统,该系统采用全光纤器件,结构紧凑、体积小、可靠性强。通过拍频测试,得到该系统的频率噪声在30 mHz~1 Hz范围内小于30 Hz/Hz1/2,频率稳定度在积分时间为1 s和1000 s时分别为1.2×10-14和3×10-13。该系统的性能满足LISA任务对稳频激光的需求,有望应用于未来的空间引力波探测任务。  相似文献   

15.
金属卤化物中的晶格振动   总被引:2,自引:0,他引:2       下载免费PDF全文
魏建华  解士杰  梅良模 《物理学报》2000,49(10):2027-2032
运用紧束缚双带模型对MX化合物晶格振动的计算发现,晶格振动谱由一条声频支和三条光频支组成,进一步得到了出现元激发时,晶格振动色散关系中的分立频率和相应的定域振动模.在MX化合物红外吸收谱的计算中发现对应不同元激发红外谱具有不同的特征. 关键词: 电荷密度波 晶格振动 红外吸收  相似文献   

16.
JC-2型超声处理机是一种在液体中进行超声处理的多用途超声设备。它由超声振动系统(包括换能器和变幅杆)和超声频电动率源两大部份组成。其特点是在被处理液体中的超声强度可以在较宽的范围内连续调节,具有频率自动跟踪特性,在不同负载条件下能使振动系统始终工作在最佳状态。设有定时处理装置及输出强度指示,使用方便。  相似文献   

17.
刘乔  李泽仁  孟坤  权润爱 《光子学报》2014,40(6):916-920
为探索THz干涉技术用于障碍物后振动传感的可行性,采用工作波长214.58 μm (对应频率约1.4 THz)的CO2激光器泵浦气体太赫兹源搭建了一套基于迈克尔逊干涉仪结构的THz干涉测量装置,实验研究了薄纸板遮挡后敲击目标镜产生的微小振动,利用相位分析法和频谱分析法对振动干涉信号进行处理,得到了振动位移随时间的变化以及不同时段振动频率的分布情况,测得的峰峰值振幅最小为7.98 μm,最大为17.54 μm,振动峰值速度为2.7 mm/s,振动频率最小21 Hz,最大58 Hz.研究结果表明THz干涉测量技术能有效克服传统振动传感技术无法穿透障碍物的缺点,是一种简便有效的障碍物后振动传感的新型手段,预示了THz技术在振动检测相关领域的广阔应用前景.  相似文献   

18.
利用实验的方法研究了碳纳米管悬浮液对脉宽8 ns,波长532 nm多脉冲激光的光限幅效应.分析了直径分布为10~20 nm的多壁碳纳米管悬浮液对重复频率分别为1 Hz、 3 Hz、 5 Hz、 10 Hz情况下532 nm激光的光限幅效应,分析计算了不同重复频率下碳纳米管悬浮液的限幅阈值,比较了不同焦距的透镜会聚入射光束情况下对碳纳米管悬浮液光限幅效果的影响.实验结果表明:碳纳米管悬浮液对不同重复频率的532 nm 激光都具有较强的光限幅特性;碳纳米管悬浮液对激光在不同重复频率入射情况下的光限幅阈值变化很大,当入射激光的重复频率为5 Hz时,碳纳米管悬浮液的光限幅阈值比单脉冲激光入射时的限幅阈值低了2倍,重复频率为10 Hz时的限幅阈值比单脉冲时的限幅阈值低了近3倍;碳纳米管在紧焦系统中的光限幅效果更好.  相似文献   

19.
目的:探索随机振动和正弦振动因素下生成语音在听觉效果上的变化规律。方法:随机振动采用频率范围2-20Hz,加速度为0.3G、0.5G、0.7G(有效值,下同),正弦振动采用频率4、6、8、10、12Hz,加速度为0.3G、0.5G;在安静及信噪比分别为0dB和-6dB三种状态下对随机振动组、正弦振组及对照组3个组的语音材料进行清晰度测试。结果:和对照组相比,随机振动组,清晰度几科没有变化,正弦振动组,0.3G时4Hz、0.5G时6Hz和8Hz作用下语音清晰度有明显降低,检验结果非常显著。研究还发现,清晰度的降低随听音环境的信噪比的降低而变得严重;结论:正弦振动对发音人发音的影响,会使通话效果变差,并且在听音环境恶劣时尤为突出。  相似文献   

20.
基于悬臂梁调谐技术的光纤光栅无源振动监测   总被引:9,自引:6,他引:3  
采用匹配光纤光栅设计了一种结构简单的振动信号无源监测装置.该装置利用悬臂梁调谐技术能够将微小振动信号转化为光电探测器可探测的光强信号,利用示波器实现实时监测.实验中对振幅为3mm的简谐振动信号进行了监测,测量结果与振动频率一致,可测量7~20Hz的振动,信噪比不低于14.9dB.监测频率受限是因为悬臂梁的性质,如采用金属材料或者采用齿轮组对转子进行减速,该装置可探测更高的频率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号