首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using electron microscopy it was found that irradiation of clad cold-worked specimens made of commercial aluminium-lithium alloy 1441 by the Ar + ions of energy 40 keV at low doses of irradiation (1015 cm−2, irradiation time 1 s, T < 70 °C) and ion-current density of about 100 μA/cm2 results in the transformation of the cellular structure formed in the alloy under deformation. As the dose of irradiation is increased up to 1016 cm−2, a transition from a cellular to a subgrain structure close to a polygonal one is observed. The efficiency of the process is increased with ion-current density. Furthermore, under ion irradiation at increased ion-current densities, the β′(Al 3 Zr) and Al 8 Fe 2 Si particles present in the deformed alloy dissolve, and disperse particles of a new Al 2 LiMg phase of platelet shape are formed. The changes in the dislocation structure and phase composition in alloy 1441 are observed several seconds after irradiation not only in the surface layer adjacent to the ion incorporation band but also through the thickness of the specimen tens of thousands times greater than ion projective ranges. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 73–81, February, 2007.  相似文献   

2.
We present an AlInN/AlN/GaN MOS–HEMT with a 3 nm ultra-thin atomic layer deposition (ALD) Al2O3 dielectric layer and a 0.3 μm field-plate (FP)-MOS--HEMT. Compared with a conventional AlInN/AlN/GaN HEMT (HEMT) with the same dimensions, a FP-MOS--HEMT with a 0.6 μm gate length exhibits an improved maximum drain current of 1141 mA/mm, an improved peak extrinsic transconductance of 325 mS/mm and effective suppression of gate leakage in both the reverse direction (by about one order of magnitude) and the forward direction (by more than two orders of magnitude). Moreover, the peak extrinsic transconductance of the FP-MOS--HEMT is slightly larger than that of the HEMT, indicating an exciting improvement of transconductance performance. The sharp transition from depletion to accumulation in the capacitance--voltage (C--V) curve of the FP-MOS--HEMT demonstrates a high-quality interface of Al2O3/AlInN. In addition, a large off-state breakdown voltage of 133 V, a high field-plate efficiency of 170 V/μ m and a negligible double-pulse current collapse is achieved in the FP-MOS--HEMT. This is attributed to the adoption of an ultra-thin Al2O3 gate dielectric and also of a field-plate on the dielectric of an appropriate thickness. The results show a great potential application of the ultra-thin ALD-Al2O3 FP-MOS--HEMT to deliver high currents and power densities in high power microwave technologies.  相似文献   

3.
The behavior of Young’s modulus E and the decrement of ultrasonic vibrations δ in a V-4Ti-4Cr alloy is studied during proton (8-MeV protons, dose rate 104 Gy/s) or IR laser (YAG: Nd3+ laser, wavelength 1.06 μm, intensity up to 102 W/cm2) irradiation. Measurements are performed using the method of a composite piezoelectric oscillator (longitudinal 100-kHz resonance vibrations). The sizes of the irradiated surface regions of a sample in the proton and laser experiments are the same in order to provide the same thermal conditions in the sample-quartz transducer system. The amplitude, time, and temperature dependences of E and δ are measured before and after preliminary plastic deformation, as well as before, during, and after irradiation of a sample. The process of postdeformation aging (the kinetics of recovery of internal friction after deformation) during proton irradiation is shown to differ substantially from that during laser irradiation. The specific features detected can be explained by the more intense evolution of the defect structure during proton irradiation. Analysis shows that radiation annealing is related to the ionizing component of proton irradiation, which excites the electronic subsystem of the metallic alloy and, thus, creates hot electrons and plasmons. The electron excitations relax at lattice defects (dislocations) and increase the dislocation mobility; this results in a relatively rapid decrease in the dislocation density and in a more significant (as compared to the laser irradiation) decrease in the level of internal stresses in the material. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 8, 2004, pp. 1409–1415. Original Russian Text Copyright ? 2004 by Kardashev, Plaksin, Stepanov, Chernov.  相似文献   

4.
X-ray emission spectroscopy (Si L 2, 3 spectra, 3d3s → 2p electronic transition) was employed to study p-and n-type silicon samples implanted with Fe+ ions in a pulse mode (the implantation energy was 30 keV, the pulse current was varied up to 0.5 A, the pulse duration was 400 μs, and the ion irradiation doses ranged from 1014 to 1017 cm−2). The x-ray emission spectra were found to be dependent on the ion irradiation dose and the electron-accelerating voltage that was used in the x-ray studies. By comparing the Si L spectra with the spectra of reference materials and by modeling the former spectra, it was revealed that, as the ion-irradiation dose increases, there occur disordering of the structure, partial amorphization of the sample in a surface layer approximately 7200-? thick, and its subsequent recrystallization (under high irradiation doses). It was shown that this effect is most pronounced in a layer at a depth of ∼1000 ? and is not associated with the formation of iron silicide FeSi in the bulk of the sample but rather is due to the breakage of Si-Si bonds caused by ion implantation under the irradiation doses used. Original Russian Text ? D.A. Zatsepin, E.S. Yanenkova, é.Z. Kurmaev, V.M. Cherkashenko, S.N. Shamin, S.O. Cholakh, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 2, pp. 204–209.  相似文献   

5.
Theoretical studies show that the Hertzian-conical crack can be considered to be composed of double cone faces for simplification. In the present study, the three-dimensional finite-difference time-domain method is employed to quantify the electric-field distribution within the subsurface in the presence of such a defect under the normal incidence irradiation. Both impurities (inside the crack) and the chemical etching have been investigated. The results show that the maximum electric field amplitude |E| max is 9.57374 V/m when the relative dielectric constant of transparent impurity equals 8.5. And the near-field modulation will be improved if the crack filled with remainder polishing powders or water vapor/drops. Meanwhile, the laser-induced initial damage is moving to the glass-air surface. In the etched section, the magnitude of intensification is strongly dependent on the inclination angle θ. There will be a highest modulation when θ is around π /6, and the maximum value of |E| max is 18.57314 V/m. When θ ranges from π /8 to π /4, the light intensity enhancement factor can easily be larger than 100, and the modulation follows a decreasing trend. On the other hand, the modulation curves become smooth when θ > π /4 or θ < π /8.  相似文献   

6.
蒲红斌  贺欣  全汝岱  曹琳  陈治明 《中国物理 B》2013,22(3):37301-037301
In this paper, we propose the near-infrared p-type β-FeSi2/n-type 4H-SiC heterojunction photodetector with semiconducting silicide (β-FeSi2) as the active region for the first time. Optoelectronic characteristics of the photodetector are simulated using a commercial simulator at room temperature. The results show that the photodetector has a good rectifying character and a good response to the near-infrared light. Interface states should be minimized to obtain a lower reverse leakage current. The response spectrum of the β-FeSi2/4H-SiC detector, which consists of a p-type β-FeSi2 absorption layer with a doping concentration of 1×1015 cm-3 and a thickness of 2.5 μm, has a peak of 755 mA/W at 1.42 μm. The illumination of the SiC side obtains a higher responsivity than that of the β-FeSi2 side. The results illustrate that the β-FeSi2/4H-SiC heterojunction can be used as a near-infrared photodetector compatible with near-infrared optically-activated SiC-based power switching devices.  相似文献   

7.
赵亮  潘慧霖  胡勇胜  李泓  陈立泉 《中国物理 B》2012,21(2):28201-028201
This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a “zero-strain” anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an average Na storage voltage of about 1.0 V and a reversible capacity of about 145 mAh/g, thereby making it a promising anode for sodium-ion battery. Ex-situ X-ray diffraction (XRD) is used to investigate the structure change in the Na insertion/deinsertion process. Based on this, a possible Na storage mechanism is proposed.  相似文献   

8.
We report on a tunneling study of underdoped submicron Bi2Sr2-xLaxCuO6+δ (La-Bi2201) intrinsic Josephson junctions (IJJs), whose self-heating is sufficiently suppressed. The tunneling spectra are measured from 4.2 K up to the pseudogap opening temperature of T* = 260 K. The gap value found from the spectral peak position is about 35 meV and has a weak temperature dependence both below and above the superconducting transition temperature of Tc = 29 K. Since the superconducting gap should have a value of 10-15 meV, our results indicate that the pseudogap (~35 meV) plays an important role in the underdoped La-Bi2201 intrinsic tunneling spectroscopy down to the lowest temperature of 4.2 K. However, the contribution of the superconducting gap can be separated by normalizing the spectra to the one near and above Tc, which shows that the IJJs can be a useful tool for the study of the electronic properties of the La-Bi2201 cuprate superconductors.  相似文献   

9.
S S Desai  J N Joshi  A M Shaikh 《Pramana》2002,59(4):611-619
A 2-D multi-wire position sensitive detector for X-ray diffraction and small angle X-ray scattering studies is described. The detector has an active area of 100 mm × 100 mm and consists of an anode plane with 10 μm SS wires at 3 mm spacing and a pair of orthogonal cathode readout planes with 25 μm SS wires placed at 1.5 mm spacing. The position information is obtained using charge division method and recorded using a laboratory built data acquisition system. The resolution and gas gain was measured for 5.9 keV X-rays (55Fe-source) as a function of the anode wire voltage and gas pressure. It was observed that the proportional region of the PSD at 100 kPa pressure extended up to a high voltage value of around 1.5 kV and it shifted to high values up to 2 kV for gas pressure of 300 kPa. The energy resolution improved from 18% (FWHM) to 12% with increase in pressure. The spatial resolution of the PSD also showed improvement, with a value of 1.2 mm × 1.4 mm at 300 kPa gas pressure. A maximum gain of 5 × 104 is obtained.  相似文献   

10.
刘欢欢  刘艳辉 《中国物理 B》2012,21(2):26102-026102
We extensively explore the high-pressure structures of InBi by using a newly developed particle swarm optimization algorithm. An orthorhombic Imma structure is discovered to be stable from 43.7 GPa to 107.9 GPa, ruling out the previously speculated cubic structure. Further increasing the pressure, we find a tetragonal P4/nmm structure which is energetically more favourable from 107.9 GPa to 200 GPa. Especially, the tetragonal P4/nmm structure is known to occur at high pressure in the structures of ZnO and MgTe. We also predict this structure to be a high-pressure structure of ZnTe. Thus the tetragonal P4/nmm structure may be a universal high-pressure structure of the Ⅱ-Ⅵ and the Ⅲ-Ⅴ compounds.  相似文献   

11.
王丽国  申超  郑厚植  朱汇  赵建华 《中国物理 B》2011,20(10):100301-100301
This paper describes an n-i-p-i-n model heterostructure with a manganese (Mn)-doped p-type base region to check the stability of a positively charged manganese AMn+ centre with two holes weakly bound by a negatively charged 3d5(Mn) core of a local spin S=5/2 in the framework of the effective mass approximation near the Γ critical point (k~0). By including the carrier screening effect, the ground state energy and the binding energy of the second hole in the positively charged centre AMn+ are calculated within a hole concentration range from 1 × 1016 cm-3 to 1 × 1017 cm-3, which is achievable by biasing the structure under photo-excitation. For comparison, the ground-state energy of a single hole in the neutral AMn0 centre is calculated in the same concentration range. It turns out that the binding energy of the second hole in the AMn+ centre varies from 9.27 meV to 4.57 meV. We propose that the presence of the AMn+ centre can be examined by measuring the photoluminescence from recombination of electrons in the conduction band with the bound holes in the AMn+ centre since a high frequency dielectric constant of varepsilon =10.66 can be safely adopted in this case. The novel feature of the ability to tune the impurity level of the AMn+ centre makes it attractive for optically and electrically manipulating local magnetic spins in semiconductors.  相似文献   

12.
李东飞  高淑琴  孙成林  里佐威 《中国物理 B》2012,21(8):83301-083301
The effects of anti-hydrogen bond on the ν1ν12 Fermi resonance (FR) of pyridine are experimentally investigated by using Raman scattering spectroscopy. Three systems, pyridine/water, pyridine/formamide, pyridine/carbon tetrachloride, provide varying degrees of strength for the diluent-pyridine anti-hydrogen bond complex. Water forms a stronger anti-hydrogen bond with pyridine than with formamide, and in the case of adding non-polar solvent carbon tetrachloride, which is neither a hydrogen bond donor nor an acceptor and incapable of forming hydrogen bond with pyridine, the intermolecular distance of pyridine will increase and the interaction of pyridine molecules will reduce. The dilution studies are performed on the three systems. Comparing with the values of Fermi coupling coefficient W of the ring breathing mode ν 1 and triangle mode ν 12 of pyridine at different volume concentrations, which are calculated according to the Bertran equations, in three systems, we find that the solution with the strongest anti-hydrogen bond, water, shows the fastest change in the ν1ν12 Fermi coupling coefficient W with the volume concentration varying, followed by the formamide and carbon tetrachloride solutions. These results suggest that the stronger anti-hydrogen bond-forming effect will cause a greater reduction in the strength of the ν1ν12 FR of pyridine. According to the mechanism of the formation of anti-hydrogen bond in the complexes and the FR theory, a qualitative explanation for the anti-hydrogen bond effect in reducing the strength of the ν1ν12 FR of pyridine is given.  相似文献   

13.
We have investigated the structure, optical and magnetic properties of ferroelectric KNb1-xFexO3-δ (X=0, 0.01, 0.03, 0.05, 0.10, 0.15, 0.20, 0.25) synthesized by a traditional solid-state reaction method. According to the X-ray diffraction and the results of Rietveld refinement, all the samples maintain orthorhombic distorted perovskite structures with Amm2 space group without any secondary phase, suggesting the well incorporation of Fe ions into the KNbO3 matrix. With the increase of Fe concentration, the band gap of each sample is decreased gradually, which is much smaller than the 3.18 eV band gap of pure KNbO3. Through X-ray photoelectron spectrum analysis, the increased density of oxygen vacancy and Fe ions may be responsible for the observed decrease in band gap. Compared with the pure KNbO3, Fe doped samples exhibit room-temperature weak ferromagnetism. The ferromagnetism in KNb1-xFexO3-δ with low-concentration dopants (X=0.01-0.10) can be attributed to the bound magnetic polaron mediated exchange. The enhancement of magnetism for the high-concentration (X=0.10-0.20) doped samples may arise from the further increase of magnetic Fe ions.  相似文献   

14.
侯泉文  曹炳阳 《中国物理 B》2012,21(1):14401-014401
The phonon relaxation and heat conduction in one-dimensional Fermi-Pasta-Ulam (FPU) β lattices are studied by using molecular dynamics simulations. The phonon relaxation rate, which dominates the length dependence of the FPU β lattice, is first calculated from the energy autocorrelation function for different modes at various temperatures through equilibrium molecular dynamics simulations. We find that the relaxation rate as a function of wave number k is proportional to k1.688, which leads to a N0.41 divergence of the thermal conductivity in the framework of Green-Kubo relation. This is also in good agreement with the data obtained by non-equilibrium molecular dynamics simulations which estimate the length dependence exponent of the thermal conductivity as 0.415. Our results confirm the N2/5 divergence in one-dimensional FPU β lattices. The effects of the heat flux on the thermal conductivity are also studied by imposing different temperature differences on the two ends of the lattices. We find that the thermal conductivity is insensitive to the heat flux under our simulation conditions. It implies that the linear response theory is applicable towards the heat conduction in one-dimensional FPU β lattices.  相似文献   

15.
杜洪川  王小山  胡碧涛 《中国物理 B》2011,20(8):84206-084206
We propose a method to generate a high-efficiency broadband water window supercontinuum with a ω+3ω/2 multicycle two-colour pulse. Our results reveal that the /2 laser pulse can simultaneously modulate the acceleration step and the ionization step, which not only broadens the bandwidth but also enhances the yield of the generated supercontinuum. An ultra-broadband supercontinuum from 290 eV to 555 eV covering the whole water window is generated. Using this method, we expect that an isolated 62-as pulse with a minor pre-pulse can be directly obtained.  相似文献   

16.
Ni-based catalysts supported on di erent supports (α-Al2O3,γ-Al2O3, SiO2, TiO2, and ZrO2) were prepared by impregnation. Effects of supports on catalytic performance were tested using hydrodeoxygenation reaction (HDO) of anisole as model reaction. Ni/α-Al2O3 was found to be the highest active catalyst for HDO of anisole. Under the optimal conditions, the anisole conversion is 93.25% and the hydrocarbon yield is 90.47%. Catalyst characteriza-tion using H2-TPD method demonstrates that Ni/α-Al2O3 catalyst possesses more amount of active metal Ni than those of other investigated catalysts, which can enhance the cat-alytic activity for hydrogenation. Furthermore, it is found that the Ni/α-Al2O3 catalyst has excellent repeatability, and the carbon deposited on the surface of catalyst is negligible.  相似文献   

17.
A novel and effective approach was developed to synthesize monodisperse hollow molecularly imprinted polymers (MHMIPs) with unfunctionalized SiO2 spheres in a mixture of toluene and CH3CN.The factors that affected the synthesis of MHMIPs were systematically investigated.It was determined that a suitable ratio of toluene to CH3CN and the use of a functional monomer that can generate double H-bonding interactions were the critical factors to obtain MHMIPs with high uniformity and monodispersion.The obtained MHMIPs exhibited a fast adsorption rate and high adsorption capacity (270 μmol/g) for bisphenol A.As the shell thickness increased from 90 nm to 130 nm,the binding capacity of the imprinted shells decreased gradually.The relative selectivity coefficients of MHMIPs for tetra-bromobisphenol A (TBBPA),phenol and p-tert-butylphenol (PTBP) were calculated as 1.53,1.83 and 1.90,respectively.These findings indicate that MHMIPs have good adsorption performances and suggest applications in the selective removal or sensitive analysis of bisphenol A.  相似文献   

18.
谢自力  李弋  刘斌  张荣  修向前  陈鹏  郑有炓 《中国物理 B》2011,20(10):106801-106801
The non-polar a-plane GaN is grown on an r-plane sapphire substrate directly without a buffer layer by metal-organic chemical vapour deposition and the effects of V/III ratio growth conditions are investigated. Atomic force microscopy results show that triangular pits are formed at a relatively high V/III ratio, while a relatively low V/III ratio can enhance the lateral growth rate along the c-axis direction. The higher V/III ratio leads to a high density of pits in comparison with the lower V/III ratio. The surface morphology is improved greatly by using a low V/III ratio of 500 and the roughness mean square of the surface is only 3.9 nm. The high resolution X-ray diffraction characterized crystal structural results show that the rocking curve full width at half maximum along the m axis decreases from 0.757° to 0.720°, while along the c axis increases from 0.220° to 0.251° with the V/III increasing from 500 μmol/min to 2000 μmol/min, which indicates that a relatively low V/III ratio is conducible to the c-axis growth of a-plane GaN.  相似文献   

19.
王瑞荣  陈伟民  王伟  董佳钦  肖沙里 《中国物理 B》2010,19(7):75202-075202
Several experiments are performed on the ShenGuang-II laser facility to investigate an x-ray source and test radiography concepts. X-ray lines emitted from laser-produced plasmas are the most practical means of generating these high intensity sources. By using a time-integrated space-resolved keV spectroscope and pinhole camera, potential helium-like titanium Kα x-ray backlighting (radiography) line source is studied as a function of laser wavelength, ratio of pre-pulse intensity to main pulse intensity, and laser intensity (from 7.25 to ~11.3× 1015 W/cm2). One-dimensional radiography using a grid consisting of 5 μm Au wires on 16 μm period and the pinhole-assisted point projection is tested. The measurements show that the size of the helium-like titanium Kα source from a simple foil target is larger than 100 μm, and relative x-ray line emission conversion efficiency ξx from the incident laser light energy to helium-like titanium K-shell spectrum increases significantly with pre-pulse intensity increasing, increases rapidly with laser wavelength decreasing, and increases moderately with main laser intensity increasing. It is also found that a gold gird foils can reach an imaging resolution better than 5-μm featured with high contrast. It is further demonstrated that the pinhole-assisted point projection at such a level will be a novel two-dimensional imaging diagnostic technique for inertial confinement fusion experiments.  相似文献   

20.
A study is reported of the structure of photoreflectance (PR) spectra in the vicinity of the E 0 transition from thin (d=1–5 μm) n-GaAs and n-InP films (n=1016–1017 cm−3) grown epitaxially on Si(001) substrates. A quantitative analysis of the spectra involving multi-component fitting shows that the electronic optical transition from the {3/2;±1/2} subband provides a dominant contribution to the intermediate-field electromodulation component in both systems. The splitting observed in the GaAS/Si PR spectra near the main peak are accounted for not by the strain-induced valence-band splitting but rather by a spectral superposition of the intermediate-field component due to the {3/2;±1/2} subband with a low-energy excitonic component. The analytically established transition energy E 0 3/2;±1/2 is used to calculate biaxial strains in epitaxial films. Fiz. Tverd. Tela (St. Petersburg) 41, 725–731 (April 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号