首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cu-TiO2 nanoparticles with different Cu dopant content were prepared by sol-gel method. The structure of the as-prepared catalysts and the surface species of Cu-TiO2 were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectroscopy (DRS). The relationship between the photocatalytic activity and the surface species of Cu-TiO2 was revealed via the measurement of surface photovoltage spectroscopy (SPS) as well as the degradation of the rhodamine B (RhB). The experimental results suggest that the Cu-TiO2 photocatalysts with appropriate content of Cu (about 0.06 mol%) possess abundant electronic trap, which effectively inhibits the recombination of photoinduced charge carriers, improving the photocatalytic activity of TiO2. While at high Cu dopant region (>0.06 mol%), the excessive oxygen vacancies and Cu species can become the recombination centers of photoinduced electrons and holes. Meanwhile, at heavy Cu doping concentration, excessive P-type Cu2O can cover the surface of TiO2, which leads to decrease in the photocatalytic activity of photocatalyst. The photocatalytic experimental results are in good agreement with the conclusions of SPS measurements, indicating that there is a close relationship between the photocatalytic activity and the intensity of SPS spectra.  相似文献   

2.
The Sn-TiO2−X nanoparticles have been prepared via a rapid and simple stannous chemical reducing method. The as-prepared Sn-TiO2−X nanoparticles were investigated by means of surface photovoltage spectroscopy (SPS), XPS, and DRS technology as well as photocatalytic degradation of RhB were studied under illumination. The experiment results revealed that the reduction of the TiO2 particles raised their Fermi level, which can enhance the driven force of photoinduced electrons transferring from TiO2 to adsorbed O2 and SnO2 on the surface of TiO2. On the other hand, the amount of oxygen vacancies of the Sn-TiO2−X increased after the stannous chemical reduction. The oxygen vacancies can also effectively inhibit the recombination of photoinduced electrons and holes pairs. These factors are favorable to the photocatalytic reaction.  相似文献   

3.
Nanoparticle TiO2/Ti films were prepared by a sol–gel process using Ti(OBu)4 as raw material, the as-prepared film samples were also characterized by TG-DTA, XRD, TEM, SEM, XPS, DRS, PL, SPS and EFISPS testing techniques. TiO2 nanoparticles experienced two processes of phase transition, i.e. amorphous to anatase and anatase to rutile at the calcining temperature range from 450 to 700 °C. TiO2 nanoparticles calcined at 600 °C had similar composition, structure, morphology and particle size with the internationally commercial P-25 TiO2 particles. Thus, the conclusion that 600 °C might be the most appropriate calcining temperature during the preparation process of nanoparticle TiO2/Ti film photocatalysts could be made by considering the main factors such as the properties of TiO2 nanoparticles, the adhesion of nanoparticle TiO2 film to Ti substrate, the effects of calcining temperature on Ti substrate and the surface characteristics and morphology of nanoparticle TiO2/Ti film for the practice view. The Ti element mainly existed on the nanoparticle TiO2/Ti(3) film calcined at 600 °C as the chemical state of Ti4+, while O element mainly existed as three kinds of chemical states, i.e. crystal lattice oxygen, hydroxyl oxygen and adsorbed oxygen with increasing band energy. Its photoluminescence (PL) spectra with a peak at about 380 nm could be observed using 260 nm excitation, possibly resulting from the electron transition from the bottom of conduction band to the top of valence band. The PL peak position was nearly the same as the onset of its diffuse reflection spectra (DRS) and surface photovoltage spectroscopy (SPS), demonstrating that the effects of the quantum size on optical property were greater than that of the Coulomb and surface polarization. The PL spectra with two peaks related to the anatase and rutile, respectively, could be observed using the excited wavelength of 310 nm. Weak PL spectra could be observed using the excited wavelength of 450 nm, resulting from surface states. In addition, during the experimental process of the photocatalytic degradation phenol, the photocatalytic activity of nanoparticle TiO2/Ti film with three layers calcined at 600 °C was the highest.  相似文献   

4.
TiO2 nanocrystals modified by ethoxy groups were prepared by a facile nonhydrolytic solvothermal method and characterized by XRD, TEM, TG-DTA and XPS, which showed an enhanced visible-light photocatalytic activity on the degradation of Rhodamine B compared with TiO2 modified by benzyloxy groups and the “naked” TiO2. The adsorption and degradation pathway of Rhodamine B on TiO2 modified by ethoxy groups were also investigated. The zeta-potential (ζ) results showed that the TiO2 modified by ethoxy groups had high negative surface charge, which incited the positive -N(Et)2 group of RhB absorbing on the TiO2 surface and preferably led the N-dealkylation pathway under visible light irradiation.  相似文献   

5.
Catalytically active graphene-based hollow TiO2 composites(TiO2/RGO) were successfully synthesized via the solvothermal method. Hollow TiO2 microspheres are uniformly dispersed on RGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) were used for the characterization of prepared photocatalysts. The mass of GO was optimized in the photocatalytic removal of rhodamine B (RhB) as a model dye pollutants. The results showed that graphene-based hollow TiO2 composites exhibit a significantly enhanced photocatalytic activity in degradation of RhB under either UV or visible light irradiation. The formation of the graphene-based hollow TiO2 composites and the photocatalytic mechanisms under UV and visible light were also discussed.  相似文献   

6.
An ultrasound-assisted method was used for synthesizing nanosized Pt-graphene oxide (GO)-TiO2 photocatalyst. The Pt-GO-TiO2 nanoparticles were characterized by diffused reflectance spectroscopy, X-ray diffraction, N2 BET adsorption-desorption measurements, atomic force microscopy and transmission electron microscopy. The photocatalytic and sonophotocatalytic degradation of a commonly used anionic surfactant, dodecylbenzenesulfonate (DBS), in aqueous solution was carried out using Pt-GO-TiO2 nanoparticles in order to evaluate the photocatalytic efficiency. For comparison purpose, sonolytic degradation of DBS was carried out. The Pt-GO-TiO2 catalyst degraded DBS at a higher rate than P-25 (TiO2), prepared TiO2 or GO-TiO2 photocatalysts. The mineralization of DBS was enhanced by a factor of 3 using Pt-GO-TiO2 compared to the P-25 (TiO2). In the presence of GO, an enhanced rate of DBS oxidation was observed and, when doped with platinum, mineralization of DBS was further enhanced. The Pt-GO-TiO2 catalyst also showed a considerable amount of degradation of DBS under visible light irradiation. The initial solution pH had an effect on the rate of photocatalytic oxidation of DBS, whereas no such effect of initial pH was observed in the sonochemical or sonophotocatalytic oxidation of DBS. The intermediate products formed during the degradation of DBS were monitored using electrospray mass spectrometry. The ability of GO to serve as a solid support to anchor platinum particles on GO-TiO2 is useful in developing new photocatalysts.  相似文献   

7.
Composite photocatalysts composed of TiO2 and ZrO2 have been prepared via the sol-gel method. The as-prepared nanocomposites are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrometry and fluorescence emission spectra. The results shows that TiO2/ZrO2 nanocomposites are composed of mainly anatase titania and tetragonal ZrO2. Incorporating TiO2 particles with ZrO2 plays an important role in promoting the formation of nanoparticles with an anatase structure and leads to decreased fluorescence emission intensity. Most of the TiO2/ZrO2 nanocomposites exhibited comparable photocatalytic activity compared with commercial TiO2 for the degradation aqueous methyl orange (MO) under ultraviolet irradiation, while the composite with Zr/Ti mass ratio of 15.2% shows the highest photocatalytic performances. Furthermore, the as-prepared nanocomposites can be reused with little photocatalytic activity loss. Without any further treatment besides rinsing, the photocatalytic activity of TiO2/ZrO2 (15.2%) composites is still higher than after five-cycle utilization.  相似文献   

8.
Anatase TiO2 was prepared by a facile sol-gel method at low temperature through tailoring the pH of sol-gel without calcination. As a control, anatase TiO2 was also synthesized by the conventional sol-gel process, in which calcination at 500 °C was required to transform the amorphous oxide into highly crystalline anatase. As-prepared samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). Their photocatalytic activities were evaluated by degradation of methyl orange under UV light irradiation. On the basis of experiment results, it could be concluded that TiO2 prepared by low temperature route showed more advantages in small particle size, highly dispersion nature, abundance of surface hydroxyl groups, strong PL signal, and high photocatalytic activity over TiO2 obtained by the conventional sol-gel process. Furthermore, the reason of the former possessing higher photocatalytic activity was discussed.  相似文献   

9.
The nanoparticles of TiO2 modified with carbon and iron were synthesized by sol-gel followed solvothermal method at low temperature. Its chemical composition and optical absorption were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence emission spectroscopy (PL), UV-vis absorption spectroscopy, and electron paramagnetic resonance (EPR). It was found that carbon and iron modification causes the absorption edge of TiO2 to shift the visible light region. Fe(III) cation could be doped into the matrix of TiO2, by which could hinder the recombination rate of excited electrons/holes. Superior photocatalytic activity of TiO2 modified with carbon and iron was observed for the decomposition of acid orange 7 (AO7) under visible light irradiation. The synergistic effects of carbon and iron in modified TiO2 nanoparticles were responsible for improving visible light photocatalytic activity.  相似文献   

10.
采用溶胶-水热法合成了十二烷基苯磺酸钠(DBS)包覆的TiO2纳米粒子,并利用X射线衍射仪、透射电镜、表面光电压谱(SPS)和光致发光光谱(PL)等对样品进行表征.重点探讨了DBS包覆的适宜条件及DBS包覆对TiO2光伏和发光等性质的影响.结果表明,进釜前pH值在4.5~5.5,DBS用量为TiO2质量的1.0%~3.0%时,能够获得理想包覆.在水热过程中,DBS的引入对锐钛矿型TiO2微晶的生长有抑制作用.由于DBS的包覆,使TiO2的SPS和PL信号强度显著下降,这可能与磺酸基的吸电子性以及表面缺陷等的减少有关.  相似文献   

11.
Porous surface-fluorinated TiO2 (F-TiO2) films were prepared through PEG modified sol-gel method and surface fluorination. The as-prepared films were characterized with XRD, FTIR, AFM, XPS and UV-vis DRS. The effects of surface fluorination on the photocatalytic activity and hydrophilicity of porous TiO2 film were studied by photocatalytic degradation of rhodamine B (RhB) as well as water contact angle (CA) on porous TiO2 film. The results showed that the surface fluorination increased the adsorption of RhB on the porous TiO2 film and enhanced the photocatalytic degradation of RhB. The concentration and pH of NaF solutions affected much the photocatalytic activity of porous TiO2 film. Porous F-TiO2 film prepared in 40 mM NaF solution at pH 4.0 showed the highest photocatalytic activity. Because of its porous structure, the porous F-TiO2 film had original water CA of 22.7°, which is much smaller than that of normal F-TiO2 film. Under UV light irradiation, the water CA of porous F-TiO2 film decreased to 5.1° in 90 min.  相似文献   

12.
Nanostructure titanium dioxide (TiO2) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO2 and Ag-TiO2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO2. The positive effect of silver on the photocatalytic activity of TiO2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO2 surface and therefore enhances the photocatalytic activity of the synthesized TiO2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO2 and 96% for Ag-TiO2.  相似文献   

13.
Porous organic carbon-doped titania (C-TiO2) nanomaterials and their composites with Ag nanoparticles (Ag/C-TiO2) were synthesized by an eggshell membrane templating method, and their structural and photocatalytic properties were systematically characterized. These nanomaterials, exhibiting a macroscopic morphology of a thin film, are composed of interwoven tubes, and the tube wall consists of nanocrystals. The doped organic carbon was composed of the active carbon and carbonate species, which could form a layer around the surface of TiO2 nanoparticles, while the silver was incorporated into Ag/C-TiO2 composites as separated Ag nanoparticles. The degradation of methylene blue under visible light irradiation was employed to evaluate the photocatalytic activity of these as-prepared TiO2-based materials. Both C-TiO2 and Ag/C-TiO2 nanomaterials showed higher photocatalytic activity than pure TiO2 material–commercial Degussa P25. These results can be accounted for the coupling effect of the incorporation of carbon species and Ag nanoparticles.  相似文献   

14.
In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe3+-dopants in TiO2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO2) and N-doped TiO2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.  相似文献   

15.
ABSTRACT

Rb+-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by sol–gel method. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), and surface area (BET) measurements. The photocatalytic activity for the degradation of rhodamine B (RhB) was evaluated. The effects of calcination temperature, Rb+-doping amount, and the dosage of catalyst in the reaction liquid were investigated. The results showed that Rb+ doping can inhibit phase transformation from anatase to rutile, increase surface area of TiO2 crystals, and reduce crystallite size. TiO2 doped with 1% Rb+ and calcined at 650°C shows much higher photoactivity than the others when the doping level of Rb+ and calcination temperature are 0–5% and 350–850°C, respectively. The kinetics of the degradation of RhB was also analyzed. The kinetics of this reaction fits the pseudo first-order kinetics model well, and the reaction rate constants for pure TiO2 and Rb1-650 are 0.086 min?1 and 0.226 min?1 respectively. Doping with Rb+ improves the photocatalytic activity of TiO2 significantly.  相似文献   

16.
A new type of composite photocatalysts (ZnO/TiO2–B) with Zinc oxide nanoparticles dispersed on boron doped titanium dioxide was prepared via a sol–gel method. The as-prepared powders were characterized by HRTEM, XRD, XPS, UV–vis DRS, and PL techniques. The results reveal that B3+ ions are doped into the TiO2 lattice in interstitial mode, while ZnO nanoparticles are dispersed on the surface of TiO2. The absorption of photocatalysts was extended into visible light region and the photogenerated electrons and holes were separated efficiently. Hence, ZnO/TiO2–B composite photocatalyst exhibits much better photocatalytic activity than those of pure TiO2 and TiO2–B on photodegradation of 4-chlorophenol under visible light irradiation.  相似文献   

17.
Fluorinated TiO2 hollow microspheres with three-dimensional hierarchical architecture were prepared by solvothermally treatment using solid microspheres as precursor. The obtained solid and hollow TiO2 microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The photocatalytic activity of as-prepared solid and hollow TiO2 microspheres was determined by degradation of methyl orange (MO) under visible light irradiation. The results showed that the surface fluorination, the existence of accessible mesopores channels, and the increased light harvesting abilities could remarkably improve the photocatalytic activity of TiO2 hollow microspheres.  相似文献   

18.
The nanocrystalline anatase TiO2, which was synthesized by a sol-hydrothermal process in advance, has successfully modified with cetyltrimethylammonium bromide (CTAB) in the acidic condition as well as in the basic condition. On the basis of the measurements of infrared spectrum and X-ray photoelectron spectroscopy of the resulting TiO2, together with the phase-transfer experiments, it is suggested that the modification mechanism in the acidic condition is closely related to Br. Interestingly, compared with un-modified TiO2, the modified TiO2 exhibits high photocatalytic activity for degrading Rhodamine B (RhB) solution, especially for that modified in the acid. The enhanced photocatalytic activity of modified TiO2 in the acid is attributed to the role that the Br can easily capture photo-induced holes and then form active Br, consequently effectively inducing photocatalytic oxidation reactions, based on the surface photovoltage responses of the resulting TiO2. After that, a one-pot sol-hydrothermal route at the temperature as low as 80 °C is developed to directly synthesize CTAB-modified nanocrystalline TiO2 with a little preferred growth along 〈0 0 1〉 direction, which can be easily dispersed in the organic system and possess good photocatalytic performance. This work provides a feasible strategy to further improve the photocatalytic performance of nanocrystalline anatase and to synthesize TiO2 nanocrystals with preferential growth.  相似文献   

19.
N-doped TiO2/C3N4 composite samples were synthesized by heating the mixture of the hydrolysis product of TiCl4 and C3N4 at different weight ratios. The samples were characterized by X-ray diffraction (XRD), Raman spectrum, UV–vis absorption spectrum, photoluminescence spectrum, X-ray photon electron spectrum (XPS) and surface photovoltage spectrum (SPS). The XRD and Raman results indicate that the introduction of C3N4 could inhibit the formation of rutile TiO2. The composite samples show slight visible light absorption due to the introduction of C3N4. The XPS result reveals that some amount of nitrogen is doped into TiO2, and C3N4 exists in the composite sample. The intensities of the SPS signal in the composite samples decrease with the rise in the amount of C3N4 in the samples. The photocatalytic activity was evaluated from the Rhodamine B (RhB) degradation under fluorescence light irradiation. The composite samples show significantly enhanced photocatalytic activities and the RhB self-sensitized photodegradation in this system was observed by measuring the photocurrent in the dye sensitized solar cell using the composite as the working electrode.  相似文献   

20.
Novel graphene–TiO2 (GR–TiO2) composite photocatalysts were synthesized by hydrothermal method. During the hydrothermal process, both the reduction of graphene oxide and loading of TiO2 nanoparticles on graphene were achieved. The structure, surface morphology, chemical composition and optical properties of composites were studied using XRD, TEM, XPS, DRS and PL spectroscopy. The absorption edge of TiO2 shifted to visible-light region with increasing amount of graphene in the composite samples. The photocatalytic degradation of methyl orange (MO) was carried out using graphene–TiO2 composite catalysts in order to study the photocatalytic efficiency. The results showed that GR–TiO2 composites can efficiently photodegrade MO, showing an enhanced photocatalytic activity over pure TiO2 under visible-light irradiation. The enhanced photocatalytic activity of the composite catalysts might be attributed to great adsorptivity of dyes, extended light absorption range and efficient charge separation due to giant π-conjugation system and two-dimensional planar structure of graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号