首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TiO2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO2 mass weight, respectively, and the linkage between DBS groups and TiO2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO2 is also related to the increase in the capability for adsorbing RhB.  相似文献   

2.
The degradation and mineralization of orange-G (OG) in aqueous solutions by means of ultrasound irradiation at a frequency of 213 kHz and its combination with a heterogeneous photocatalyst (TiO2) were investigated. The effects of various operational parameters such as, the concentration of the dye and solution pH on the degradation efficiency were studied. The degradation of the dye followed first-order like kinetics under the conditions examined. The sonolytic degradation of OG was relatively higher at pH 5.8 than that at pH 12. However, an alkaline pH was favoured for the photocatalytic degradation of OG using TiO2. Total organic carbon (TOC) measurements were also carried out in order to evaluate the mineralization efficiency of OG using sonolysis, photocatalysis and sonophotocatalysis. The hybrid technique of sonophotocatalytic degradation was compared with the individual techniques of photocatalysis and sonolysis. A simple additive effect was observed during the sonophotocatalytic oxidation of OG using TiO2 indicating that the combined treatment offers no synergistic enhancement. TOC results also support the additive effect in the dual treatment process.  相似文献   

3.
TiO2 photocatalysts deposited on activated carbon (TiO2/AC) were prepared by dip-hydrothermal method at 180 °C using peroxotitanate as a precursor, then calcinated at 300-800 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and the nitrogen absorption. Their photocatalytic activity was evaluated by degradation of methyl orange (MO). The results showed that TiO2 particles of anatase type were well deposited on the activated carbon surface. TiO2/AC calcinated at 600 °C exhibited the best photocatalytic performance. For the comparison, the same photocatalysis experiment was carried out for two mixtures of commercial TiO2 (Degussa P25) with AC and synthetic TiO2 with AC. It was found that the composite catalyst TiO2/AC was better than the two mixtures. Besides, different from fine powdered TiO2, the granular TiO2/AC photocatalysts could be easily separated from the bulk solution and reused; indeed, its photocatalytic ability was hardly decreased after a five-cycle for MO degradation. The kinetics of the MO degradation fitted well the Langmuir-Hinshelwood model.  相似文献   

4.
In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe3+-dopants in TiO2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO2) and N-doped TiO2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.  相似文献   

5.
Catalytically active graphene-based hollow TiO2 composites(TiO2/RGO) were successfully synthesized via the solvothermal method. Hollow TiO2 microspheres are uniformly dispersed on RGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) were used for the characterization of prepared photocatalysts. The mass of GO was optimized in the photocatalytic removal of rhodamine B (RhB) as a model dye pollutants. The results showed that graphene-based hollow TiO2 composites exhibit a significantly enhanced photocatalytic activity in degradation of RhB under either UV or visible light irradiation. The formation of the graphene-based hollow TiO2 composites and the photocatalytic mechanisms under UV and visible light were also discussed.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(5):1675-1681
An attempt has been made to render the visible light driven photocatalytic activity to the TiO2 nanocatalysts by loading 1 wt% of rare earth (RE) nanoclusters (Gd3+, Nd3+ and Y3+) using a low frequency (42 kHz) producing commercial sonicator. The STEM-HAADF analysis confirms that the RE nanoclusters were residing at the surface of the TiO2. Transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses confirm that the loading of RE nanoclusters cannot make any significant changes in the crystal structure of TiO2. However, the optical properties of the resulted nanocatalysts were significantly modified and the nanocatalysts were employed to study the sonocatalytic, photocatalytic and sonophotocatalytic decolorization as well as mineralization of Acid Blue 113 (AB113). Among the experimented nanocatalysts maximum degradation of AB113 was achieved in the presence Y3+-TiO2 nanocatalysts. The decolorization of AB113 in the presence and absence of Y3+ loaded TiO2 ensues the following order sonolysis < photocatalysis < sonocatalysis < sonophotocatalysis. The sonophotocatalytic decolorization of AB113 shows 1.4-fold (synergy index) enhanced rate when compared with the two corresponding individual advanced oxidation processes. The sonophotocatalytic mineralization shows that 65% of total organic carbon (TOC) can be removed from AB113 after the 5 h of continuous irradiation however the mineralization cannot be able to show the synergetic effect.  相似文献   

7.
采用水热法以HF作为结构调控剂合成了主要暴露(001)面的锐钛矿TiO2纳米片,通过光沉积方法分别合成了负载Ru和RuO2物种的光催化剂。利用X射线衍射、透射电镜和氢气程序升温还原等分析表征了催化剂的结构性质。通过光解水产氧反应来研究催化剂的催化性能,详细考察了Ru含量、负载方式以及氧化和还原处理等因素的影响,光解水产氧速率的差异证明了Ru物种在不同晶面的电荷-空穴分离效应。与负载单一助催化剂的Ru/TiO2和RuO2/TiO2样品相比,活性最优的0.5%Ru-1.0%RuO2/TiO2样品由于负载了双助催化剂,其催化活性得到更大的提高,证实了在锐钛矿TiO2上的晶面电荷-空穴分离效应.  相似文献   

8.
The degradation of diclofenac has been realized for the first time by a piezo-enhanced sonophotocatalytic approach based on ZnO. The sonophotocatalytic degradation showed a slight enhancement in the degradation of the parent compound, whereas strong synergistic effects were observed for the mineralization process when suitable ZnO morphologies are used, reaching 70% of complete degradation of 25 ppm diclofenac using 0.1 g/L ZnO in 360 min. Tests in a complex water matrix show enhanced diclofenac removal, outperforming a TiO2 benchmark photocatalyst. These promising experimental results promote this process as a good alternative to traditional degradation approaches for remediation of real water matrices.  相似文献   

9.
Composite photocatalysts composed of TiO2 and ZrO2 have been prepared via the sol-gel method. The as-prepared nanocomposites are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrometry and fluorescence emission spectra. The results shows that TiO2/ZrO2 nanocomposites are composed of mainly anatase titania and tetragonal ZrO2. Incorporating TiO2 particles with ZrO2 plays an important role in promoting the formation of nanoparticles with an anatase structure and leads to decreased fluorescence emission intensity. Most of the TiO2/ZrO2 nanocomposites exhibited comparable photocatalytic activity compared with commercial TiO2 for the degradation aqueous methyl orange (MO) under ultraviolet irradiation, while the composite with Zr/Ti mass ratio of 15.2% shows the highest photocatalytic performances. Furthermore, the as-prepared nanocomposites can be reused with little photocatalytic activity loss. Without any further treatment besides rinsing, the photocatalytic activity of TiO2/ZrO2 (15.2%) composites is still higher than after five-cycle utilization.  相似文献   

10.
Novel graphene–TiO2 (GR–TiO2) composite photocatalysts were synthesized by hydrothermal method. During the hydrothermal process, both the reduction of graphene oxide and loading of TiO2 nanoparticles on graphene were achieved. The structure, surface morphology, chemical composition and optical properties of composites were studied using XRD, TEM, XPS, DRS and PL spectroscopy. The absorption edge of TiO2 shifted to visible-light region with increasing amount of graphene in the composite samples. The photocatalytic degradation of methyl orange (MO) was carried out using graphene–TiO2 composite catalysts in order to study the photocatalytic efficiency. The results showed that GR–TiO2 composites can efficiently photodegrade MO, showing an enhanced photocatalytic activity over pure TiO2 under visible-light irradiation. The enhanced photocatalytic activity of the composite catalysts might be attributed to great adsorptivity of dyes, extended light absorption range and efficient charge separation due to giant π-conjugation system and two-dimensional planar structure of graphene.  相似文献   

11.
The current research work deals with the preparation of TiO2 and GO/TiO2 composite by simple, chemical, cost effective hydrothermal method. Graphene oxide (GO) is prepared by modified Hummer’s method. Dispersion of GO is achieved by an ultrasonic cleaning bath for 1 h. using a power of 200 W and at a frequency of 40 kHz. The prepared catalyst material is characterized by different characterization techniques. XRD study confirms the prepared material is polycrystalline in nature. The synthesized TiO2 and GO/TiO2 photocatalyst materials are used to study the photocatalytic degradation of salicylic acid under sunlight illumination. GO/TiO2 composite shows superior photocatalytic activity than TiO2. GO/TiO2 composite shows 57% degradation of salicylic acid. Mineralization of salicylic acid is studied using chemical oxygen demand.  相似文献   

12.
Watson  S.  Beydoun  D.  Scott  J.  Amal  R. 《Journal of nanoparticle research》2004,6(2):193-207
Nanocrystalline titanium dioxide (TiO2) particles were prepared by a modified alkoxide method under acidic conditions at temperatures ranging from 60°C to 90°C. The reaction temperature was used to control the crystalline phase of the TiO2 particles. At 60°C and 75°C rutile was formed whilst at 90°C anatase and brookite were formed.The photocatalytic activity of the prepared particles was tested for the degradation of sucrose. The photocatalytic activities of the prepared nanosized TiO2 were compared to those obtained from Degussa P-25 TiO2 as well as TiO2 crystalline samples prepared using the conventional sol–gel/heat treatment method. At low organic concentrations, Degussa P-25 exhibited higher photocatalytic behaviour than all the prepared particles while, at high organic concentrations, the nanosized TiO2 particles prepared at low temperature displayed an activity comparable to Degussa P-25 but much higher than the heat treated sample. The formation of excess intermediates during the degradation of higher sucrose loadings is believed to hinder the photoactivity of Degussa P-25, while the prepared TiO2 particles are able to maintain their activity for the degradation of the intermediates of sucrose.  相似文献   

13.
MgTi2O5 (magnesium dititanate) nanoparticles were prepared by a simple hydrothermal assisted post-annealing method and characterized with various analytical techniques. The catalytic properties (sonocatalytic, photocatalytic and sonophotocatalytic activity) were evaluated using the degradation of triphenylmethane dyes (crystal violet, basic fuchsin, and acid fuchsin). The sonophotocatalytic activity of MgTi2O5 nanoparticles towards crystal violet was found to be ~2.9 times higher than the photocatalytic activity and ~20 times higher than that of the sonocatalytic processes. In addition, the sonophotocatalytic efficiency of MgTi2O5 nanoparticles was found to be remarkable for the degradation of basic fuchsin (cationic dye) and acid fuchsin (anionic dye). The mechanism of these catalytic activities has been discussed in detail.  相似文献   

14.
Thermal behavior of amylose/TiO2 films under ultrasonic irradiation was investigated, and the final product of each process was applied to prepare amylose/TiO2 nanocomposite films. The effects of different degradation techniques on thermal behavior, crystallinity, and molecular weight distribution of amylose were surveyed. The evaluations of structural changes and thermal behaviors were performed by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetry analysis, FT-IR spectroscopy, and scanning electron microscopy. The XRD results clarified that the crystalline shape of amylose molecules formed is an A-type crystal due to the sonophotocatalytic processing, while the FT-IR spectra does not approve any chemical change in amylose structure. The DSC data submitted a broad endothermic peak for amylose. In the case of high loading of nanoparticles, the endothermic analysis results and diffraction peaks for the sonophotocatalytic process were not significant. This indicates that the length of amylose chains through the sonophotocatalytic degradation became smaller. An increase at the loading of TiO2 improved the hydrophilic properties of amylose/TiO2 films, which leads to the modification of water absorption behavior. Mechanical properties of amylose/TiO2 films were affected by the uniform dispersion of TiO2 in the polymer matrix.  相似文献   

15.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

16.
Bimetal incorporated TiO2 photocatalysts (FeZn–TiO2) prepared by a flame method showed high photocatalytic activity for the degradation of 2-propanol dissolved in water as compared with mono-metal incorporated or unincorporated TiO2. By using this flame method, parameters such as uniform particle size, crystallinity as well as the anatase and rutile phase ratio (anatase/rutile) could be controlled without calcination of the catalysts at high temperatures, the parameters being important to achieve a high photocatalytic activity. The presence of a small amount of bimetals such as Fe and Zn plays a vital role as a catalyst in the formation of highly crystalline, small and uniform size particles with defined anatase/rutile phase ratio of around 60/40, this being similar to that of P-25 which is well known as a highly active photocatalyst.  相似文献   

17.
This work aims to develop a rapid and efficient strategy for preparing supported metal catalysts for catalytic applications. The sonication-assisted reduction–precipitation method was employed to prepare the heterogeneous mono- and bi-metallic catalysts for photocatalytic degradation of methyl orange (MO) and preferential oxidation (PROX) of CO in H2-rich gas. In general, there are three advantages for the sonication-assisted method as compared with the conventional methods, including high dispersion of metal nanoparticles on the catalyst support, the much higher deposition efficiency (DE) than those of the deposition–precipitation (DP) and co-precipitation (CP) methods, and the very fast preparation, which only lasts 10–20 s for the deposition. In the AuPd/TiO2 catalysts series, the AuPd(3:1)/TiO2 catalyst is the most active for MO photocatalytic degradation; while for PROX reaction, Ru/TiO2, Au–Cu/SBA-15 and Pt/γ-Al2O3 catalysts are very active, and the last one showed high stability in the lifetime test. The structural characterization revealed that in the AuPd(3:1)/TiO2 catalyst, Au–Pd alloy particles were formed and a high percentage of Au atoms was located at the surface. Therefore, this sonication-assisted method is efficient and rapid in the preparation of supported metal catalysts with obvious structural characteristics for various catalytic applications.  相似文献   

18.
Magnetically separable composite photocatalysts, TiO2 deposited on soft magnetic ferrite activated carbon (TFAC), were prepared by sol-gel and dip-coating technique. The prepared composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectra (FTIR), optical absorption spectroscopy, vibrating sample magnetometer (VSM) and nitrogen adsorption. These photocatalysts exhibited enhanced photocatalytic activity compared to Degussa P25 for the degradation of methyl orange (MO) in aqueous solution. The kinetics of MO degradation was well fitted to the Langmuir-Hinshelwood model. The samples showed good magnetic response and could be completely recovered by an external magnet. Furthermore, the photocatalysts could maintain high photocatalytic activity after five cycles, and the degradation rate of MO was still close to 90%.  相似文献   

19.
Nanostructure titanium dioxide (TiO2) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO2 and Ag-TiO2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO2. The positive effect of silver on the photocatalytic activity of TiO2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO2 surface and therefore enhances the photocatalytic activity of the synthesized TiO2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO2 and 96% for Ag-TiO2.  相似文献   

20.
Particular TiO2 nanoparticles with high selective photocatalytic oxidation of anionic dyes are prepared by a feasible hydrothermal method. Moreover, its photocatalytic selectivity can be easily switched to cationic dyes by a simple post-treatment in ammonia solution, which makes the prepared TiO2 have bi-directional selectivity in dye photodegradation. Based on the photocatalytic performances and the structure and surface characteristics of the catalyst, the bi-directional selectivity of the catalysts is found to be closely related to the adsorption selectivity. The adsorption selectivity originates from surface charge groups, which are introduced during the preparation and post-treatment progresses. This study provides a facile and economical approach towards selective degradation of dyes with high efficiency by the special TiO2 nanoparticles synthesized through a simple hydrothermal method, which may be used practically in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号