首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Values of new series sum(((2n-1)!ζ(2n))/(2n + 2k)!)α2n from n=1 to ∞,sum(((2n-1)!ζ(2n))/(2n+2k +1)!)β2n from n=1 to ∞ are given concerning ζ(2k + 1),where k is a positive integer,α can be taken as 1,1/2,1/3,2/3,1/4,3/4,1/6,5/6 and β can be taken as 1,1/2.Some previous results are included as special cases in the present paper and new series converges more rapidly than those exsiting results for α = 1/3,or α = 1/4,or α = 1/6.  相似文献   

2.
Let σ(k, n) be the smallest even integer such that each n-term positive graphic sequence with term sum at least σ(k, n) can be realized by a graph containing a clique of k + 1 vertices. Erdos et al. (Graph Theory, 1991, 439-449) conjectured that σ(k, n) = (k - 1)(2n- k) + 2. Li et al. (Science in China, 1998, 510-520) proved that the conjecture is true for k 〉 5 and n ≥ (k2) + 3, and raised the problem of determining the smallest integer N(k) such that the conjecture holds for n ≥ N(k). They also determined the values of N(k) for 2 ≤ k ≤ 7, and proved that [5k-1/2] ≤ N(k) ≤ (k2) + 3 for k ≥ 8. In this paper, we determine the exact values of σ(k, n) for n ≥ 2k+3 and k ≥ 6. Therefore, the problem of determining σ(k, n) is completely solved. In addition, we prove as a corollary that N(k) -= [5k-1/2] for k ≥6.  相似文献   

3.
数列求和的方法很多,己有许多杂志刊登了各种数列求和方法的文章,本文提及的循环求和法,其思想方法是通过式子变形,使所求和重复出现,造成循环,亦即构造出含有所求和S的方程S=f(s),然后解出S。问题:求 sum from k=1 to n (k·2~k)sum from k=1 to n (k·2~k)=sum from k=0 to (n-1) ((k+1)2~(k+1))=2 sum from k=0 to (n-1) k2~k+sum from k= to (n-1) (2(k+1))=2[sum from k=1 to n (k·2~k-n·2~n)]+sum from k=1 to n 2~k∴ sum from k=1 to n (k·2~k)=n·2~(n+1)-(2~(n+1)-2) 有许多同志会感兴趣于研究sum from k=1 to n (k~p 2~k)  相似文献   

4.
Abstract A graph G is k-ordered Hamiltonian,2≤k≤n,if for every ordered sequence S of k distinctvertlces of G,there exists a Hamiltonian cycle that encounters S in the given order. In this article, we provethat if G is a graph on n vertices with degree sum of nonadjacent vertices at least n+3k-9/2,then G is k-orderedHamiltonian for k=3,4,…,[n/19].We also show that the degree sum bound can be reduced to n+2[k/2]-2 ifk(G)≥3k-1/2 or δ(G)≥5k-4.Several known results are generalized.  相似文献   

5.
Let n ≥ 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam stability problem for the following functional equation f(n-1∑j=1 xj+2xn)+f(n-1∑j=1 xj-2xn)+8 n-1∑j=1f(xj)=2f(n-1∑j=1 xj) +4 n-1∑j=1[f(xj+xn)+f(xj-xn)] which contains as solutions cubic, quadratic or additive mappings.  相似文献   

6.
The aim of this paper is to show that the following difference equation:Xn+1=α+(xn-k/xn-m)^p, n=0,1,2,…,
where α 〉 -1, p 〉 O, k,m ∈ N are fixed, 0 ≤ m 〈 k, x-k, x-k+1,…,x-m,…,X-1, x0 are positive, has positive nonoscillatory solutions which converge to the positive equilibrium x=α+1. It is interesting that the method described in the paper, in some cases can also be applied when the parameter α is variable.  相似文献   

7.
In this paper we prove that, with at most O(N^5/12+ε) exceptions, all positive odd integers n ≤ N with n ≡ 0 or 1(mod 3) can be written as a sum of a prime and two squares of primes.  相似文献   

8.
We prove that each sufficiently large odd integer N can be written as sum of the form N = p1^3 +p2^3 +... +p9^3 with [pj - (N/9)^1/31 ≤ N^(1/3)-θ, where pj, j = 1,2,...,9, are primes and θ = (1/51) -ε.  相似文献   

9.
Let Hn(p)be the class of functions of the form f(z)=z p+ +∞ Σ k=n akzk+p,which are analytic in the open unit disk U={z:|z|1}.In the paper,we introduce a new subclass Bn(μ,a,c,α,p;φ)of Hn(p)and investigate its subordination relations,inclusion relations and distortion theorems.The results obtained include the related results of some authors as their special case.  相似文献   

10.
A covering lemma on the unit sphere is established and then is applied to establish an almost everywhere convergence test of Marcinkiewicz type for the Fourier-Laplace series on the unit sphere which can be stated as follows: Theorem Suppose f ∈ L(En-1), n≥ 3. If f satisfies the condition 1/θ^n-1∫D(x,θ)|f(y)-f(x)|dy=O(1/|logθ|),as θ→0+, at every point x in a set E of positive measure in Σn-1, then the Cesàro means of critical order ,n-2/2 of the Fourier-Laplace series of f converge to f at almost every point x in E.  相似文献   

11.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

12.
在本文,作为著名的R\''enyi公式(其刻画了标号连通单圈图的计数显式)的自然推广,我们研究了标号匀称$(k+1)$秩$(p,~q)$超单圈的计数问题,给出了如下的计数显式:$$U_{p,~q}^{(k+1)}=\begin{cases} \frac{p!}{2[(k-1)!]^q}\cdot\sum_{t=2}^q \frac{q^{q-t-1}\cdot sgn(tk-2)}{(q-t)!}, & p=qk, \\ 0,& p\neq qk, \end{cases}$$其中$k,~p,~q$均为正整数.  相似文献   

13.
The Catalan numbers $1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,\ldots$ are given by $C(n)=\frac{1}{n+1}\binom{2n}{n}$ for $n\geq 0$. They are named for Eugene Catalan who studied them as early as 1838. They were also found by Leonhard Euler (1758), Nicholas von Fuss (1795), and Andreas von Segner (1758). The Catalan numbers have the binomial generating function $$\mathbf{C}(z) = \sum_{n=0}^{\infty}C(n)z^n = \frac{1 - \sqrt{1-4z}}{2z}$$ It is known that powers of the generating function $\mathbf{C}(z)$ are given by $$\mathbf{C}^a(z) = \sum_{n=0}^{\infty}\frac{a}{a+2n}\binom{a+2n}{n}z^n.$$ The above formula is not as widely known as it should be. We observe that it is an immediate, simple consequence of expansions first studied by J. L. Lagrange. Such series were used later by Heinrich August Rothe in 1793 to find remarkable generalizations of the Vandermonde convolution. For the equation $x^3 - 3x + 1 =0$, the numbers $\frac{1}{2k+1}\binom{3k}{k}$ analogous to Catalan numbers occur of course. Here we discuss the history of these expansions. and formulas due to L. C. Hsu and the author.  相似文献   

14.
Let β 〉 0 and Sβ := {z ∈ C : |Imz| 〈β} be a strip in the complex plane. For an integer r ≥ 0, let H∞^Г,β denote those real-valued functions f on R, which are analytic in Sβ and satisfy the restriction |f^(r)(z)| ≤ 1, z ∈ Sβ. For σ 〉 0, denote by Bσ the class of functions f which have spectra in (-2πσ, 2πσ). And let Bσ^⊥ be the class of functions f which have no spectrum in (-2πσ, 2πσ). We prove an inequality of Bohr type
‖f‖∞≤π/√λ∧σ^r∑k=0^∞(-1)^k(r+1)/(2k+1)^rsinh((2k+1)2σβ),f∈H∞^r,β∩B1/σ,
where λ∈(0,1),∧and ∧′are the complete elliptic integrals of the first kind for the moduli λ and λ′=√1- λ^2,respectively,and λ satisfies
4∧β/π∧′=1/σ.
The constant in the above inequality is exact.  相似文献   

15.
ON A MULTILINEAR OSCILLATORY SINGULAR INTEGRAL OPERATOR (I)   总被引:2,自引:0,他引:2  
ONAMULTILINEAROSCILLATORYSINGULARINTEGRALOPERATOR(I)CHENWENGUHUGUOENLUSHANZHENManuscriptreceivedOctober18,1994.RevisedDece...  相似文献   

16.
In this paper,we point out that the Fourier series of a classical function∑∞k=1 sin kx/k has the Gibbs phenomenon in the neighborhood of zero.Furthermore,we estimate the upper bound of its partial sum and get:supn≥1‖n∑k=1sin kx/k‖∫x0sin x/xdx=1.85194,which is better than that in[1].  相似文献   

17.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

18.
Let G be a k(k ≤3)-edge connected simple graph with minimal degree ≥ 3,girth g,r=g12.For any independent set {a1,a2 , . . . , a 6/(4 k)} of G,if,then G is up-embeddable.  相似文献   

19.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

20.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号