首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用轮子图构造出一类图,证明了这类图都是点传递但边不传递的正则图,并证明了通过覆盖的方法,可以使一类2m2(m>3,m为正整数)阶非边传递图变成对称图,这类对称图实际上是亚循环图.  相似文献   

2.
提供了一类新的上可嵌入图类,并且得到了一类直径为2的二连通伪图以及一类直径为4的重图的最大亏格的紧下界,这推广了Skoviera的一个结果.  相似文献   

3.
王燕 《数学进展》2007,36(1):115-118
本文给出了Frobenius群Z_(2n~2 2n 1)■Z_4的一类四度Frobenius图.沿用方、李和Praeger的方法,计算出了这一类图的直径和型(定理3.2).  相似文献   

4.
张存铨 《中国科学A辑》1981,24(9):1056-1062
Alspach证明了正则竞赛图具有弧泛回路的性质。本文将指出有更大一类竞赛图也具有弧泛回路的性质。并且正则竞赛图也显然属于这一类竞赛图。这类竞赛图满足两个条件:弧三回路和|T|≤4k-3(k为竞赛图T的最小出、入度)。  相似文献   

5.
首先证明了关于一般图的多色Ramsey数的一个下界,该下界是一类星图对完全图的多色Ramsey数的精确下界;其次证明了关于星图对完全图的多色Ramsey数的上界,该上界是一类星图对完全图的多色RamSey数的精确上界;最后证明关于树图对完全图的多色Ramsey数的上界.  相似文献   

6.
扈生彪 《数学杂志》2007,27(6):661-663
本文研究了连通图的Laplacian特征值,利用图的Laplacian矩阵的特征多项式的行列式表示式,对存在两个不同顶点,但有相同邻集的一类图,得到了一个Laplacian特征值,并给出了它的应用.  相似文献   

7.
本文讨论了一类偶阶图的边优美性。同时得到了完全图是边优美图的充要条件。  相似文献   

8.
图的星色数     
李德明 《数学进展》1999,28(3):259-265
给出了一些星色数为4的平面图,它们不含有轮图作为子图,这回答了Zhu的一个问题,给出了一类4连通平面图其星色数在3与4之间,这也回答了Abbott和Zhou的一个问题,应用图的同态概念,讨论了某些图的字典积的星色数,证明了一个图及其补图的星色数的和与积所满足的两个不等式。  相似文献   

9.
研究了基于n阶二部图和s阶完全图构造的一个图类,得到了该图类的无符号拉普拉斯最小特征值(即最小Q-特征值)的一个可达上界为s.基于此,对于任意给定的正整数s和正偶数n,构造了最小Q-特征值为s的一类n+s阶图.另外,对于任意给定的最小度δ和阶数n,在满足2≤δ≤n-1/2条件下,构造了最小Q-特征值为δ-1的一类n阶图.  相似文献   

10.
《大学数学》2020,(1):25-27
连通图的幂图的可圈性研究在结构图论中具有十分重要的意义.论文主要解决了Klostermeyer在文献[2]提出的一个开放性问题,至少五个顶点的3连通图的平方图是一类可圈图.  相似文献   

11.
张昭  黄琼湘 《数学进展》2005,34(4):441-447
Bubble-Sort图和Modified Bubble-Sort图是两类特殊的Cayley图,由于其在网络构建中的应用而受到广泛关注.本文完全确定了这两类图的自同构群.  相似文献   

12.
周波  柳柏濂 《数学研究》1999,32(2):133-136
给出了一些 新的紧图,并对 不是超紧的紧图 作了一些讨论  相似文献   

13.
路在平  徐明曜 《数学进展》2004,33(1):115-120
图X称为边正则图,若X的自同构群Aut(X)在X的边集上的作用是正则的.本文考察了三度边正则图与四度Cayley图的关系,给出了一个由四度Cayley图构造三度边正则图的方法,并且构造了边正则图的三个无限族.  相似文献   

14.
提出了灯笼图、多向灯笼图、复杂灯笼图,研究了它们的奇优美性,证明灯笼图是二分奇优美图、超级边魔幻图和超级反魔幻图.  相似文献   

15.
Cover-Incomparability Graphs of Posets   总被引:1,自引:1,他引:0  
Cover-incomparability graphs (C-I graphs, for short) are introduced, whose edge-set is the union of edge-sets of the incomparability and the cover graph of a poset. Posets whose C-I graphs are chordal (resp. distance-hereditary, Ptolemaic) are characterized in terms of forbidden isometric subposets, and a general approach for studying C-I graphs is proposed. Several open problems are also stated.  相似文献   

16.
图G=(V,E)的一个混合控制集是一个满足如下条件的集合DV∪E:不在D中的每个点或每条边都相邻或关联于D中的至少一个点或一条边.确定图的最小基数的混合控制集的问题称为混合控制问题.本文研究混合控制问题的算法复杂性,证明了混合控制问题在无向路图上是NP-完全的,但在块图上有线性时间算法.无向路图和块图都是弦图的子类,又是树的母类.  相似文献   

17.
Equistable graphs are graphs admitting positive weights on vertices such that a subset of vertices is a maximal stable set if and only if it is of total weight 1. Strongly equistable graphs are graphs such that for every and every nonempty subset T of vertices that is not a maximal stable set, there exist positive vertex weights assigning weight 1 to every maximal stable set such that the total weight of T does not equal c . General partition graphs are the intersection graphs of set systems over a finite ground set U such that every maximal stable set of the graph corresponds to a partition of U . General partition graphs are exactly the graphs every edge of which is contained in a strong clique. In 1994, Mahadev, Peled, and Sun proved that every strongly equistable graph is equistable, and conjectured that the converse holds as well. In 2009, Orlin proved that every general partition graph is equistable, and conjectured that the converse holds as well. Orlin's conjecture, if true, would imply the conjecture due to Mahadev, Peled, and Sun. An “intermediate” conjecture, posed by Miklavi? and Milani? in 2011, states that every equistable graph has a strong clique. The above conjectures have been verified for several graph classes. We introduce the notion of equistarable graphs and based on it construct counterexamples to all three conjectures within the class of complements of line graphs of triangle‐free graphs. We also show that not all strongly equistable graphs are general partition.  相似文献   

18.
A clique in a graph is strong if it intersects all maximal independent sets. A graph is localizable if it has a partition of the vertex set into strong cliques. Localizable graphs were introduced by Yamashita and Kameda in 1999 and form a rich class of well-covered graphs that coincides with the class of well-covered graphs within the class of perfect graphs. In this paper, we give several equivalent formulations of the property of localizability and develop polynomially testable characterizations of localizable graphs within three non-perfect graph classes: triangle-free graphs, C4-free graphs, and line graphs. Furthermore, we use localizable graphs to construct an infinite family of counterexamples to a conjecture due to Zaare-Nahandi about k-partite well-covered graphs having all maximal cliques of size k.  相似文献   

19.
The pre-coloring extension problem consists, given a graph G and a set of nodes to which some colors are already assigned, in finding a coloring of G with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs. We answer a question of Hujter and Tuza by showing that “PrExt perfect” graphs are exactly the co-Meyniel graphs, which also generalizes results of Hujter and Tuza and of Hertz. Moreover we show that, given a co-Meyniel graph, the corresponding contracted graph belongs to a restricted class of perfect graphs (“co-Artemis” graphs, which are “co-perfectly contractile” graphs), whose perfectness is easier to establish than the strong perfect graph theorem. However, the polynomiality of our algorithm still depends on the ellipsoid method for coloring perfect graphs. C.N.R.S. Final version received: January, 2007  相似文献   

20.
The partition of graphs into “nice” subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same‐size stars, a problem known to be NP‐complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial‐time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP‐complete cases, for example, on grid graphs and chordal graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号