首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modification process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed.  相似文献   

2.
A porous silicon (PS) layer was prepared by photoelectrochemical etching (PECE), and a zinc oxide (ZnO) film was deposited on a PS layer using a radio frequency (RF) sputtering system. The surface morphology of the PS and ZnO/PS layers was characterised using scanning electron microscopy (SEM). Nano-pores were produced in the PS layer with an average diameter of 5.7 nm, which increased the porosity to 91%. X-ray diffraction (XRD) of the ZnO/PS layers shows that the ZnO film is highly oriented along the c-axis perpendicular to the PS layer. The average crystallite size of the PS and ZnO/PS layers are 17.06 and 17.94 nm, respectively. The photoluminescence (PL) emission spectra of the ZnO/PS layers present three emission peaks, two peaks located at 387.5 and 605 nm due to the ZnO nanocrystalline film and a third located at 637.5 nm due to nanocrystalline PS. Raman measurements of the ZnO/PS layers were performed at room temperature (RT) and indicate that a high-quality ZnO nanocrystalline film was formed. Optical reflectance for all the layers was obtained using an optical reflectometer. The lowest effective reflectance was obtained for the ZnO/PS layers. The fabrication of crystalline silicon (c-Si) solar cells based on the ZnO/PS anti-reflection coating (ARC) layers was performed. The IV characteristics of the solar cells were studied under 100 mW/cm2 illumination conditions. The ZnO/PS layers were found to be an excellent ARC and to exhibit exceptional light-trapping at wavelengths ranging from 400 to 1000 nm, which led to a high efficiency of the c-Si solar cell of 18.15%. The ZnO/PS ARC layers enhance and increase the efficiency of the c-Si solar cell. In this paper, the fabrication processes of the c-Si solar cell with ZnO/PS ARC layers are an attractive and promising technique to produce high-efficiency and low-cost of c-Si solar cells.  相似文献   

3.
Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.  相似文献   

4.
The present work reports a simple and time-saving method to fabricate cupric stearate film on zinc substrate by a solution-immersion process. Superhydrophobic surfaces are conventionally prepared employing two steps: roughening a surface and lowering its surface energy. The fabrication of superhydrophobic cupric stearate surface is reported using a one-step process by immersing a zinc plate coated with copper into the stearic acid solution, simplifying the complexity of two different steps involved in the conventional methods. The surface of the zinc plate coated with copper is found to be covered with low surface energy cupric stearate film providing the water contact angle of 160 ± 1° with the rolling off properties. In addition, the damaged superhydrophobic surface can restore superhydrophobicity property by immersing the surface into the stearic acid solution again.  相似文献   

5.
Film over nanosphere (FON) patterns are formed by depositing a silver film on top of a close-packed polystyrene (PS) sphere template. Multiple localized surface plasmon resonance (LSPR) peaks are experimentally measured in the three-dimensional FON pattern for thin silver films. Increasing the sphere size in the close-packed template or the deposited silver film thickness red shifts the LSPR peaks to varying degrees. A finite difference time domain analysis reveals that the main LSPR peaks originate from a quadrupole and a dipole coupling mode near the triangle gap surrounded by three adjacent PS spheres. The physical location and the electromagnetic enhancement of the two resonant modes are determined for different thicknesses of deposited silver films.  相似文献   

6.
为了改善臭氧处理聚苯乙烯(PS)单层球与聚乙烯醇(PVA)溶液生成的双层乳粒在油相中的分散性,提高大尺寸双层球的成活率,在双层球制备过程中采用了非离子型表面活性剂Tween 20(T-20)来改性该种PS单层球。结果表明经表面活性剂T-20改性后显著降低了PS薄膜的亲水接触角,提高了PS与PVA间的相互作用,同时也大幅度提高了PS薄膜对PVA的吸附速率。红外光谱和紫外-可见分光光度计的测试结果证明:在PVA固化过程中,由于PVA与T-20的相比太大,PS表面吸附的表面活性剂T-20部分会被PVA置换、迁移至PVA溶液中。T-20的迁移提高了制备双层球过程中水相与外油相的粘度比且显著降低PVA溶液表面张力,从而有利于实现双重乳粒在油相中的单分散。因此,T-20是制备大尺寸PS-PVA双层空心微球有效的表面活性剂。  相似文献   

7.
本文制备了PS/PC(7/3)和PS/PMMA(5/5)的四氢呋喃(THF)溶液,通过缓慢蒸发溶剂制得PS/PC和PS/PMMA的共混物薄膜。利用不同的FTIR测试方法检测了制得薄膜中的组成分布。将PS/PC薄膜超薄切片,通过显微投射红外方法检测了其纵剖面的组成分布(测试步长为16μm)。结果表明:PS含量从膜底面到表面缓慢增大呈梯度分布,在膜表面附近急剧增大,即PS组分在成膜过程中向表面(与空气  相似文献   

8.
Hydrophobic surfaces on Mechanical stable macroporous silicon films were prepared by electrochemical etching with subsequent octadecyltrichlorosilane (OTS) modification. The surface morphologies were controlled by current densities and the mechanical properties were adjusted by their corresponding porosities. Contrast with the smooth macroporous silicon films with lower porosities (34.1%) and microporous silicon with higher porosities (97%), the macroporous film with a rough three-dimension (3D) surface and a moderate pore to cross-section area ratio (37.8%, PSi2′) exhibited both good mechanical strength (Yong’ modulus, shear modulus and collapse strength are 64.2, 24.1 and 0.32 GPa, respectively) and surface superhydrophobicity (water contact angle is 158.4 ± 2° and sliding angle is 2.7 ± 1°). This result revealed that the surface hydrophobicities (or the surface roughness) and mechanical strength of porous films could be conciliated by pore to cross-section area ratios control and 3D structures construction. Thus, the superhydrophobic surfaces on mechanical stable porous films could be obtained by 3D structures fabrication on porous film with proper pore to cross-section area ratios.  相似文献   

9.
为获得高质量的β-Ga2O3薄膜,将c面蓝宝石上生长的GaN薄膜进行高温氧化制成了Ga2O3/GaN/蓝宝石模板,进而在模板上利用金属有机化学气相沉积(MOCVD)工艺进行了β-Ga2O3薄膜的同质外延。通过X射线衍射仪、原子力显微镜、场发射扫描电子显微镜等方法对样品的晶体结构、表面形貌等性质进行测试与分析。结果表明,该方法获得的β-Ga2O3薄膜晶体质量受GaN薄膜氧化效果与MOCVD工艺条件等因素影响较大。通过优化实验条件,得到了质量较高的β-Ga2O3薄膜。与蓝宝石上或GaN薄膜上异质外延得到的β-Ga2O3薄膜相比,薄膜的晶体质量明显提高。通过对比不同样品的晶体质量、表面形貌和制备过程,发现该方法成功地将β-Ga2O3薄膜在蓝宝石衬底或GaN/蓝宝石模板上异质外延转化为了Ga2O3/GaN/蓝宝石模板上的同质外延,有效地减小了β-Ga2O3薄膜和蓝宝石、GaN之间较大的晶格失配和热失配,有利于提高β-Ga2O3薄膜的晶体质量。  相似文献   

10.
低成本、环境友好的铜锌锡硫替代含贵金属和有毒金属的铜铟镓硒,是薄膜太阳能电池的最佳选择。电镀法是一种无需真空设备和靶材的低成本方法。一种更简单的制膜方法是在水溶液中共电镀沉积Cu-Zn-Sn(CZT)合金于FTO衬底上。采用氩气保护气氛下在550 ℃硫化电镀法制得的CZT合金前驱体,成功制备了CZTS薄膜。采用三电极体系将CZT合金前驱体电镀在FTO上,其中FTO作为工作电极,铂(Pt)网和Ag/AgCl分别作为对电极和参比电极。电解质由CuSO4,ZnSO4,SnSO4,络合剂-三乙醇胺(TEA)和柠檬酸钠组成。前驱体在氩气保护气氛下550℃硫化得到CZTS薄膜。采用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)、紫外可见光光谱仪和光电化学测量(PEC)等方法,表征了CZTS薄膜的结构、形貌、成分和光谱学性质。XRD和拉曼光谱证明了550 ℃硫化后的CZTS薄膜具有锌黄锡矿结构。一个Raman主峰位于342 cm-1,两个Raman次强峰分别位于289和370 cm-1,这些峰位与锌黄锡矿CZTS的峰位相吻合。SEM结果证明优化后CZTS薄膜成分接近CZTS的理想化学计量比,CZTS薄膜中Cu/(Zn+Sn)和 S/(Zn+Sn+Cu)分别为0.52和1.01,这表明CZTS薄膜中S的含量非常合适。PEC结果证实,采用前照射或后照射FTO/CZTS均产生光电流,并且两种照射下产生的光电流方向一致。通过紫外可见光光谱测量并由此计算出的CZTS能隙为1.45 eV。通过上述分析证明制备的CZTS薄膜具有高品质,可用于制备CZTS薄膜太阳能电池。  相似文献   

11.
We present a new method in which both positive and negative pulses are used to etch silicon for fabrication of porous silicon (PS) monolayer. The optical thickness and morphology of PS monolayer fabricated with different negative pulse voltages are investigated by means of reflectance spectra, scanning electron microscopy and photoluminescence spectra. It is found that with this method the PS monolayer is thicker and more uniform. The micropores also appear to be more regular than those made by common positive pulse etching. This phenomenon is attributed to the vertical etching effect of the PS monolayer being strengthened while lateral etching process is restrained. The explanation we propose is that negative pulse can help the hydrogen cations (H^+) in the electrolyte move into the micropores of PS monolayer. These H^+ ions combine with the Si atoms on the wall of new-formed micropores, leading to formation of Si-H bonds. The formation of Silt bonds results in a hole depletion layer near the micropore wall surface, which decreases hole density on the surface, preventing the micropore wall from being eroded laterally by F^- anions. Therefore during the positive pulse period the etching reaction occurs exclusively only at the bottom of the micropores where lots of holes are provided by the anode.  相似文献   

12.
We report the selective metallization of photostructurable glass by femtosecond (fs) laser direct writing followed by electroless copper (Cu) plating. It was found that a Cu thin film can be deposited only on the rough surface of glass ablated by the fs laser. The deposited Cu thin film exhibits strong adhesion and excellent electrical properties. A Cu film can even be deposited on the internal wall of a hollow microchannel inside photostructurable glass by the multiphoton absorption of the fs laser. To show the use of this technique for micro-total-analysis-system (μ-TAS) applications, the fabrication of a microheater operating at temperatures up to 200 °C was demonstrated. PACS 81.05.Kf; 85.40.Ls; 87.85.Va  相似文献   

13.
倪海彬  王鸣  陈威 《物理学报》2012,61(8):84211-084211
研究了溶胶凝胶协同自组装制备大面积高质量SiO2反蛋白石结构薄膜的方法. 向单分散的聚苯乙烯(PS)胶体溶液中添加SiO2前驱物溶液,用垂直自组装法一步得到微球空隙中均匀填充有凝胶的 复合PS胶体晶体薄膜,在空气中烧结去除PS后得到SiO2反蛋白石结构薄膜.通过对添加前驱物溶液比例、 自组装温度以及烧结温度等参数的研究,用不同粒径的PS微球制备了不同孔径的高质量SiO2反蛋白石结构薄膜. 用扫描电子显微镜和X射线能量色散谱仪对制备得到的薄膜样品进行显微形貌和成分表征,并测试了其透射光谱. 结果表明:溶胶凝胶协同自组装法制备的SiO2反蛋白石结构薄膜大面积高度有序,孔径可以控制且选择范围宽; 薄膜的透射光谱带隙明显,带隙中心波长与理论计算结果相符.  相似文献   

14.
A fabrication technique is presented for depositing a metal film only on pointed tips by field‐induced ion transfer (FIIT) in ambient atmosphere. The technique involves transferring metal ions dissolved in electrolyte solution only onto the pointed tip with electric field and it does not require any photolithographic process. To demonstrate the usefulness of the technique, carbon nanotubes are synthesized on the nickel film formed on a tungsten tip. The field emitter thus fabricated exhibits excellent emission characteristics. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We revisited two different strategies to fabricate 1D photonic crystals of nonlinear optical dielectric materials based on ultrafast laser ablation of the surface of an RbTiOPO4 crystal, and selective etching of ferroelectric domains of the surface of a periodically poled LiNbO4 crystal. We evaluated their behaviour as Bragg diffraction gratings. We also presented the recent advances we developed in a new procedure of fabrication of 2D and 3D photonic crystals of KTiOPO4 (KTP) grown on the surface of a KTP substrate by liquid phase epitaxial means within the pores of a silicon macroporous template. Optical, structural, morphological, and compositional characterization for the photonic crystals produced through this technique are presented.  相似文献   

16.
Porous silicon (PS) prepared from n-type Si crystal is proposed as a new material for the fabrication of sensitive substrates for surface-enhanced Raman scattering (SERS). The formation procedure for nanostructured silver films on the surface of PS was optimized. Maximum of SERS enhancement for rhodamine 6G probing molecule is observed for samples obtained by the immersion plating from the water solution of AgNO3 with the 10 mM concentration during 5 min. The dependence of morphological parameters of PS and corresponding silvered surfaces on the anodization current density has been studied. It is shown that the most SERS activities possess substrates produced from PS with lower porosity. The optimum of the PS layer thickness for high Raman signal is about 5 μm. The detection limit for rhodamine 6G adsorbed on Ag-coated PS from the 100 pM solution is established to be comparable with that for p-type PS-based substrates. Thus, the n-type porous silicon is suitable material for the preparation of sensitive SERS-active substrates.  相似文献   

17.
Two-dimensional (2D) nano-objects, such as metallic nanofilms are the most fundamental building blocks for nanoelectronics devices. However, the fabrication of highly ordered nanofilms has been difficult because of well known Stranski-Krastanov growth, which results in rough growth front and high density grains. Here we report on the unusual high-quality film growth of Bi on a Si surface with atomic-level surface/interface smoothness and high film crystallinity. The formation of a newly discovered 2D allotrope was clarified to initiate its strong 2D growth. Above several-monolayer thickness, the 2D allotrope transforms into a single-crystalline film with bulk-like layered structure. Our study unveils the atomistic growth process of nano-sized Bi, and the obtained knowledge here will be generally applicable for the fabrication of various nano-devices using this intriguing material that shows rich thermal, magnetic, electronic properties in nanometer scale.  相似文献   

18.
The fabrication of high-quality electron-selective layers at low temperature is a prerequisite to realizing efficient flexible and tandem perovskite solar cells(PSCs). A colloidal-quantum-dot ink that contains TiO_2 nanocrystals enables the deposition of a flat film with matched energy level for PSCs; however, the selection of ligands on the TiO_2 surface is still unexplored. Here, we systematically studied the effect of the titanium diisopropoxide bis(acetylacetonate)(TiAc_2)ligand on the performance of PSCs with a planar n-i-p architecture. We prepared TiO_2 nanocrystals from TiCl4 and ethyl alcohol with Cl~- ligands attached on its surface and we found that a tiny amount of TiAc_2 treatment of as-prepared TiO_2 nanocrystals in a mixed solution of chloroform and methyl alcohol can enhance PSC power conversion efficiency(PCE)from 14.7% to 18.3%. To investigate the effect of TiAc_2 ligand on PSCs, TiO_2 samples with different TiAc_2 content were prepared by adding TiAc_2 into the as-obtained TiO_2 nanocrystal solution. We use x-ray photoelectron spectroscopy to identify the content of Cl so as to reveal that Cl ligands can be substituted by TiAc_2. We speculate that the improvement in PCE originates from amorphous TiO_2 formation on the TiO_2 nanocrystal surface, whereby a single-molecule layer of amorphous TiO_2 facilitates charge transfer between the perovskite film and the TiO_2 electronic transport layer, but excessive TiAc_2 lowers the PSC performance dramatically. We further prove our hypothesis by x-ray diffraction measurements. We believe the PCE of PSCs can be further improved by carefully choosing the type and changing the content of surface ligands on TiO_2 nanocrystal.  相似文献   

19.
臭氧化法表面改性聚苯乙烯薄膜   总被引:2,自引:1,他引:1       下载免费PDF全文
 为增强聚苯乙烯(PS)与聚乙烯醇(PVA)之间的结合力,进而提高PS-VA双层空心微球存活率。利用臭氧化改性法在酸性介质中对聚苯乙烯薄膜进行表面改性,用红外光谱对处理后的表面进行了半定量的分析。结果表明:改性过后聚苯乙烯表面产生羟基、羰基等极性基团;接触角测试证明,处理后的表面由憎水变为亲水,并通过纳米压痕划痕法得到了处理前后PS与PVA薄膜之间的相互作用强度,臭氧化改性后PS与PVA膜间作用强度增大了40%。  相似文献   

20.
A new type of biosensor was fabricated by coating gold nanoparticles onto a film with a three-dimensionally ordered macroporous (3DOM) structure. It was found that the localized surface plasmon resonance of the immobilized nanoparticles changes with the infiltration medium inside the voids of the 3DOM film and the surface-adsorbed compounds. Application of this type of film to the real-time detection of immunoreaction was demonstrated. It is anticipated that this kind of film will have applications in label-free biosensors. PACS 81.07.-b; 81.16.Dn; 87.83.+a  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号