首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Highly Er3+ /yb3+-codoped single-mode phosphate glass fibre is fabricated by the rod-in-tube technique. The performances of high-concentration Er3+ /yb3+-codoped phosphate glass fibre amplifiers are investigated and discussed. An efficient optical fibre amplifier with a gain of 12.6 dB based on a 3.0 cm long Era+ /ybe+-codoped phosphate glass fibre is demonstrated under a dual-pump configuration with two 976 nm fibre-pigtail laser diodes, which make it attractive for compact Er3+-doped fibre amplifiers. The obtedned noise figures of signal wavelength from 1525 to 1565nm are less than 6.0dB. Gain saturation behaviour at 1535nm is also investigated, and the obtained saturation output power is larger than 10 dBm.  相似文献   

2.
We experimentally investigate the laser characteristics of a series of short pieces of newly-developed Er3+/Yb3+ codoped single mode phosphate glass fibres via the cladding pump of a 976nm multimode laser diode. A stablecontinuous-wave single transverse mode laser with over 85mW at 1553nm is generated from a 5.5-cm-long active fibre. Single mode laser output power per unit length is up to 15mW/cm. Moreover, the slope efficiency is 11.8% when the pump power is below 940mW and the 3dB linewidth is 0.06nm at the maximum pump power. The numerical simulation results show that the laser emission slope efficiency can exceed 20% by means of increasing the coupling efficiency of the pump to the fibre core further.  相似文献   

3.
The generation of a flat supercontinuum of over 80nm in the 1550nm region by injecting 1.6ps 10 GHz repetition rate optical pulses into an 80-m-long dispersion-flattened microstructure fibre is demonstrated. The fibre has small normal dispersion with a variation smaller than 1.5 (ps·nm^-1·km^-1) between 1500 and 1650nm. The generated supercontinuum ranging from 1513 to 1591 nm has the flatness of ±1.5 dB and it is not so flat in the range of several nanometres around the pump wavelength 1552nm. Numerical simulation is also used to study the effect of optical loss, fibre parameters and pumping conditions on supercontinuum generation in the dispersion-flattened microstructure fibre, and can be used for further optimization to generate flat broad spectra.  相似文献   

4.
Ca3Y2 (BO3)4:Eu^3+ phosphor is synthesized by high temperature solid-state reaction method, and the Iuminescence characteristics are investigated. The emission spectrum exhibits two strong red emissions at 613 and 621 nm corresponding to the electric dipole ^5 Do- ^7F2 transition of Eu^3+ under 365 nm excitation, the reason is that Eu^3+ substituting for Y^3+ occupies the non-centrosymmetric position in the crystal structure of Ca3 Y2 (BO3)4. The excitation spectrum for 613 nm indicates that the phosphor can be effectively excited by ultraviolet (UV) (254 nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu^3+ concentration on the emission intensity of Ca3 Y2 (BO3)4 :Eu^3+ phosphor is measured, the result shows that the emission intensities increase with increasing Eu^3+ concentration, then decrease. The CIE colour coordinates of Ca3Y2 (BO3)4:Eu^3+ phosphor is (0.639, 0.357) at 15mol% Eu^3+.  相似文献   

5.
A self-starting, passively mode-locked all-fibre ring laser based on the homemade Er^3+/Yb^3+ codoped phosphate glass fibre is reported. Dual-pump sources were used to achieve the mode-locked operation in the experiment. The fundamental mode-locked pulse repetition rate is 10.67MHz. The pulse duration, assumed as the fit of hyperbolic secant pulse shape, is 5.82ps. We also observe the multi-pulse output of the fibre laser.  相似文献   

6.
LiSrBO3 :Eu3+ phosphor is synthesized by a high solid-state reaction method, and its luminescent characteristics are investigated. The emission and excitation spectra of LiSrBO3:Eu3+ phosphors exhibit that the phosphors can be effectively excited by near ultraviolet (401 nm) and blue (471 nm) light, and emit 615nm red light. The effect of Eua+ concentration on the emission spectrum of LiSrBO3:Eu3+ phosphor is studied; the results show that the emission intensity increases with increasing Eu3+ concentration, and then decreases because of concentration quenching. It reaches the maximum at 3mol%, and the concentration self-quenching mechanism is the dipoledipole interaction according to the Dexter theory. Under the conditions of charge compensation Li+, Na+ or K+ incorporated in LiSrBO3, the luminescent intensities of LiSrBO3 :Eua+ phosphor are enhanced.  相似文献   

7.
For the Er^3+ /Yb^3+ codoped fluorophosphate glasses, Judd-Ofelt theory is used to analyse the influence of YbF3 as not a sensitizer but an average component on the spectroscopic properties around 1530nm emission. The double roles of Yb^3+, as a sensitizer and as an average component, are discussed. It is found that Yb^3+ as an average component contributes to the increase of fluorescence lifetime, and Yb^3+ as a sensitizer has the best sensitization when its concentration is 2.4 mol%.  相似文献   

8.
Absorption spectra of BiSbO4 are studied. The electronic structure calculated by the DFT shows that BiSbO4 is a semiconductor, with direct band gap 2.96 eV, which is consistent with UV-visible diffuse reflectance experiment. The host lattice emission band is located at 440 nm under VUV excitation. Eu^3+ and Pr^3+ doped samples have high luminescence efficiency in emitting red and green light, respectively. From the partial density of states, Eu^3+ doped emitting spectrum, and the host crystal structure parameters, the relationship between structure and optical properties is discussed. It is found that the Eu^3+ ions occupied Bi^3+ sites, and there could be an energy transfer from Bi^3+ ions to RE^3+ ions.  相似文献   

9.
The samples of europium ions doped titanium dioxide (Eu^3+/TiO2) nanocrystals are synthesized by a modified sol-gel method with hydrothermal treatment. The x-ray diffraction and scanning electron microscopy are used to characterize the sample. The temperature-dependent fluorescence emission effect of Eu^3+-doped samples is investigated. It is found that under the excitation of 514.5nm light, the emission intensity of Eu^3+ reaches a maximum value at 450K among various Eu^3+ dopant concentrations in Eu^3+ /TiO2 nanocrystals. The variation of the emission intensity may be attributed to the photon-assist absorption and the temperature-quenching effect.  相似文献   

10.
We report on cooperative quantum cutting in Tb^3+- Yb^3+ codoped glass ceramics. Precipitation of BaF2 nanocrystals is confirmed by XRD and HRTEM analysis. Near-infrared emission due to transition of Yb^3+ ions under 485 nm excitation indicates cooperative energy transfer from Tb^3+ to Yb^3+. The quantum efficiency of this process reaches 145%. The realization of quantum cutting in glass ceramics may have promising applications in solar cells.  相似文献   

11.
Europium-doped yttrium-silicon-oxide-nitride phosphors are synthesized by carbothermal reduction and nitridation method. The crystal structure of the phosphors changed gradually from oxide Y2Si2O7 to nitride YSi3N5 state with increasing dosage of Si3N4 and carbon powder. The Y2Si2O7:Eu phosphor shows a blue emission at 465 nm with 300 nm excitation and a characteristic red emission of Eu^3+ at 612 nm with 230 nm excitation. The YSi3N5:EU phosphor shows a broad emission band centred at 595nm with some sharp peaks of Eu^3+ with 325nm excitation. The absorption of the studied phosphors increases from 450 to 700hm with an increment in nitrogen content. Blue-to-orange tunable luminescence is observed with 390 nm excitation.  相似文献   

12.
Non-degenerate four wave mixing based on third-order susceptibility X^3 in high nonlinearity microstructure fibres is experimentally demonstrated. The Stokes and anti-Stokes peaks are observed simultaneously by launching 10-fs pulses from an 80Ohm Ti:sapphire laser into the fibre.  相似文献   

13.
We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd^3+:Y3A15 O12 (Nd: YAG) and Yb^3+ : Y3A15 O12 (Yb: YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is contributed due to Fe^3+ impurity, the latter is due to Fe^2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb:YAG crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.  相似文献   

14.
Er^3+ :Yb^3+ codoped tellurite-fluorophosphate (TFP) glass ceramic exhibits much stronger upconversion luminescence. The intensity of the 540nm green light and 651 nm red light of the TFP glass ceramic is 120 times and 44 times stronger than that of the fluorophospahte (FP) glass, respectively. XRD analysis shows that the nanocrystal in TFP glass ceramic is SrTe5O11. TFP glass ceramic also displays much higher upconversion fluorescence lifetime and crystallization stability. The narrow and strong peak at 540nm is very ideal for practical upconversion luminescence realization. This work is a new trial for exploring non-PbF2 involved nanocrystal upconversion glass ceramics.  相似文献   

15.
Electronic structures and absorption spectra for perfect PbW04 (PWO) crystals and the crystal containing aggregated defect [V^2- Pb-V^2+ o-V^2- Pb]^2-have been calculated using density functional theory code CASTEP with the lattice structure optimized. The calculated absorption spectra of the PWO crystal containing the aggregated defect [V^2- Pb-V^2+ o-V^2- Pb]^2-exhibit two absorption bands peaking at 1.90eV (65Onto) and 3.02eV (41Onto). It is predicted that the 420 and fiSOnm absorption bands are related to the existence of the aggregated defect [V^2- Pb-V^2+ o-V^2- Pb]^2-in the PWO crystal.  相似文献   

16.
By using an Ar^+ ion laser, a tunable Rh 6G dye laser (linewidth 0.5cm^-1) pumped by the second harmonic of a YAG:Nd laser and a Coherent 899-21 dye laser as light sources and using a monochromator, a phase-locking amplifier and a computer as the data detecting system, we detect the optical properties of Eu^3+-doped Y2SiO5 crystal. Persistent ,spectral hole burning (PSHB) are observed in the Eu^3+ ions spectral lines (^5 Do-T Fo transition) in the crystal at the temperature of 16K. For 15mW dye laser burning the crystal for 0.1 s spectral holes with hole width about 80 MHz both at 579.62nm and at 579.82nm are detected and the holes can remain for a long time, more than 10h.  相似文献   

17.
We report a thin film electroluminescent device with a three-layer structure (diamond/CeF3/SiO2 films), which has a luminance of 1.5 cd/m^2 at dc voltage 215 V. The electroluminescence spectrum at room temperature shows that the main peaks locate at 527 and 593nm, which are attributed to isolated emission centers of Ce^3+ ions.  相似文献   

18.
Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2Sa chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS2-2OGa2 Sa:O.fBi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2Sa chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to claxify the structure of glasses. These Bi-doped GeS2 Ga2Sa chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.  相似文献   

19.
A miniaturized, high repetition rate, picosecond all solid state photo-induced distributed feedback (DFB) polymer-dye laser is described by applying a passively Q-switched and frequency-doubled Cr4+:Nd3+:YAG-microchip laser (pulse width Δτ=540 ps, repetition rate ν=3 kHz, pump energy Epump=0.15 μJ) as a pump source. A poly-methylmethacrylate film doped with rhodamine B dye serves as active medium. The DFB-laser pulses are temporally and spectrally characterized, and the stability of the thin polymer/dye film at high repetition rates is analyzed. The shortest DFB-laser pulses obtained have a duration of 11 ps. After the emission of 350000 pulses the intensity of the DFB-laser output has decreased by a factor of two and the pulse duration has increased by a factor of 1.2. For single DFB-laser pulses of 20-ps duration the spectral bandwidth is measured to be Δλ=0.03 nm, which is only 0.005 nm above the calculated Fourier limit assuming a Gaussian profile for the temporal shape of the pulses. Coarse wavelength tuning of the DFB laser between 590 and 619 nm is done by turning the prism. Additionally, a fine tuning of the DFB-polymer-laser wavelength is achieved by changing the temperature of the polymer/dye layer (=-0.05 nm/°C) in the range from 20 to 40 °C. Received: 1 March 2001 / Revised version: 23 May 2001 / Published online: 18 July 2001  相似文献   

20.
We report that a deep ultraviolet (DUV) laser from the sixth harmonic of a 1064nm laser has been firstly used as light source in an ultrahigh energy-resolution angle-resolved photoemission spectroscopy (ARPES). The wavelength is 177.3nm obtained by using the second harmonic KBe2BO3F2 crystal with a frequency tripled 1064nm Nd:YVO4 laser. The large flux (10^14 - 10^15 photons/s) and narrow line width (0.26 meV) are suitable for the ultrahigh-energy resolution ARPES. The laser-ARPES can be a powerful tool to study the electronic structure at and near the Fermi level of the superconductor and correlated materials. The laser-ARPES has worked more than 500 h already.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号