首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   6篇
化学   1篇
物理学   9篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有10条查询结果,搜索用时 250 毫秒
1
1.
Nd3+-doped fiber lasers at around 900 nm based on the 4F3/2→4I9/2 transition have obtained much research attention since they can be used as the laser sources for generating pure blue fiber lasers through the frequency doubling.Here,an all-fiber laser at 915 nm was realized by polarization-maintaining Nd3+-doped silica fiber.A net gain per unit length of up to 1.0 dB/cm at 915 nm was obtained from a 4.5 cm fiber,which to our best knowledge is the highest gain coefficient reported in this kind of silica fiber.The optical-to-optical conversion efficiency varies with the active fiber length and the reflectivity of the output fiber Bragg grating(FBG),presenting an optimal value of 5.3%at 5.1 cm fiber length and 70%reflectivity of the low reflection FBG.Additionally,the linear distributed Bragg reflector short cavity was constructed to explore its potential in realizing single-frequency 915 nm fiber laser.The measurement result of longitudinal-mode properties shows it is still multi-longitudinal mode laser operation with 40 mm laser cavity.These results indicate that the Nd3+-doped silica fiber could be used to realize all-fiber laser at 915 nm,which presents potential to be the seed source of high-power fiber laser.  相似文献   
2.
An erbium-doped phosphate glass fibre has been drawn by the rod-in-tube technique in our laboratory. The gain for the Er^3+-doped phosphate glass fibre with different pump powers and with different input signal wavelengths is investigated. The 2.2-cm-long fibre, pumped by a single-mode 980-nm fibre-pigtailed laser diode, can provide a net gain per unit length greater than 1.SdB/cm. The pump threshold is about 50mW at the wavelength of 1534nm, and below 70roW at 1550nm. The gain linewidth of the Er^3+-doped phosphate glass fibre is greater than 34 nm and can cover the C band in optical communication networks.  相似文献   
3.
连续单频光纤激光器在光纤通信、光纤传感、引力波探测、激光雷达、非线性频率转换、光谱学等领域有着广泛的应用前景,发展十分迅速.近20年来,1.5μm波段连续单频光纤激光性能不断提高,如激光线宽从兆赫兹到千赫兹、功率从毫瓦到近百瓦量级,但激光器的噪声抑制、放大线宽展宽、输出功率等仍有待进一步研究.本文回顾了获得1.5μm波段连续单频激光输出的关键技术,总结了本课题组基于磷酸盐玻璃光纤短腔Bragg反射(DBR)结构实现1.5μm波段连续单频光纤激光性能,以及单频激光功率放大的研究进展.  相似文献   
4.
This paper reports on the fabrication and characterization of a newly erbium-doped single-mode tellurite glass-fibre applicable for 1.5-μum optical amplifiers. A very broad erbium amplified spontaneous emission in the range 1450--1650nm from erbium-doped single-mode tellurite glass-fibre is obtained upon excitation of a 980-nm laser diode. The effects of the length of glass-fibre and the pumping power of laser diode on the amplified spontaneous emission are discussed. The result indicates that the tellurite glass-fibre is a promising candidate for designing fibre-optic amplifiers and lasers.  相似文献   
5.
Highly Er3+ /yb3+-codoped single-mode phosphate glass fibre is fabricated by the rod-in-tube technique. The performances of high-concentration Er3+ /yb3+-codoped phosphate glass fibre amplifiers are investigated and discussed. An efficient optical fibre amplifier with a gain of 12.6 dB based on a 3.0 cm long Era+ /ybe+-codoped phosphate glass fibre is demonstrated under a dual-pump configuration with two 976 nm fibre-pigtail laser diodes, which make it attractive for compact Er3+-doped fibre amplifiers. The obtedned noise figures of signal wavelength from 1525 to 1565nm are less than 6.0dB. Gain saturation behaviour at 1535nm is also investigated, and the obtained saturation output power is larger than 10 dBm.  相似文献   
6.
单频光纤激光器研究进展   总被引:5,自引:0,他引:5  
单频光纤激光器在激光武器、激光雷达、空间激光通信、相干光通信、高精度光谱测量、引力波探测等领域有着广泛的应用前景,受到了研究者的极大关注。从1.0,1.5,2.0μm三种典型工作波段进行归类,综述了单频光纤激光器的国内外研究现状,内容涵盖了单频光纤激光产生、噪声抑制、线宽压窄、连续与脉冲单频激光放大等技术。此外,结合了本课题组在单频光纤激光器方面的研究工作,着重介绍了基于单振荡器和主振荡功率放大器结构的单频光纤激光器近年来的研究进展,并展望了单频光纤激光器的未来发展方向。  相似文献   
7.
We experimentally study a novel fibre with high gain per unit length based on the homemade erbium-ytterbium codoped phosphate glass. The gain and noise characterizations with different pump powers at different wavelengths are investigated. The 1.8-cm-long fibre, dual-pumped by two single mode 980-nm fibre-pigtailed laser diodes, provides a gain per unit length greater than 3.0dB/cm and a noise figure less than 6.SdB. The gain saturation behaviour at 1535nm is obtained and the saturation output power (3 dB compression) is greater than 5 dBm.  相似文献   
8.
A self-starting, passively mode-locked all-fibre ring laser based on the homemade Er^3+/Yb^3+ codoped phosphate glass fibre is reported. Dual-pump sources were used to achieve the mode-locked operation in the experiment. The fundamental mode-locked pulse repetition rate is 10.67MHz. The pulse duration, assumed as the fit of hyperbolic secant pulse shape, is 5.82ps. We also observe the multi-pulse output of the fibre laser.  相似文献   
9.
We demonstrate a high-power single-frequency master oscillator power amplifier (MOPA) fiber laser.The central wavelength of the single-frequency fiber laser seed is 1 063.8 nm,with a linewidth narrower than 20 kHz and output power of 120 mW.By using two-stage amplification,a single-frequency fiber laser with an output power of 122 W is obtained,and the optical-optical conversion efficiency is 72%.No significant amplified spontaneous emission (ASE) or stimulated Brillouin scattering (SBS) is observed.The output power can be further increased by launching more pump power.  相似文献   
10.
We experimentally investigate the laser characteristics of a series of short pieces of newly-developed Er^3+/ Yb^3+ codoped single mode phosphate glass fibres via the cladding pump of a 976nm multimode laser diode. A stable continuous-wave single transverse mode laser with over 85 m W at 1553nm is generated from a 5.5-em-long active fibre. Single mode laser output power per unit length is up to 15 mW/cm. Moreover, the slope efficiency is 11.8% when the pump power is below 940mW and the 3dB linewidth is 0.06nm at the maximum pump power. The numerical simulation results show that the laser emission slope efficiency can exceed 20% by means of increasing the coupling efficiency of the pump to the fibre core further.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号