首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
采用同轴静电纺丝技术, 以氧化钇、氧化铕、正硅酸乙酯(C8H20O4Si)、无水乙醇、PVP和DMF为原料, 成功制备出大量的Y2O3:Eu3+@SiO2豆角状纳米电缆. 用TG-DTA, XRD, SEM, TEM和荧光光谱等分析技术对样品进行了系统地表征. 结果表明, 得到的产物为Y2O3:Eu3+@SiO2豆角状纳米电缆, 以无定型SiO2为壳层, 晶态Y2O3:Eu3+球为芯, 电缆直径约为200 nm, 内部球平均直径约150 nm, 壳层厚度约为25 nm, 电缆长度>300 μm. 纳米电缆内部为球状结构, 沿着纤维长度方向有序排列, 形貌均一. Y2O3:Eu3+@SiO2豆角状纳米电缆在246 nm紫外光激发下, 发射出Eu3+离子特征的波长为614 nm的明亮红光. 对其形成机理进行了初步讨论.  相似文献   

2.
以硝酸镁(Mg(NO3)2·6H2O)和硼砂(Na2B4O7·10H2O)为原料,稀土元素Eu3+为激活剂,采用聚乙烯吡咯烷酮(PVP)辅助共沉淀法得到前驱体,并通过焙烧制备了多级结构Mg3B2O6:Eu3+花状微球。通过XRD、SEM、TEM以及荧光光谱等手段分别对前驱体煅烧产物的结构、形貌、组成和荧光特性进行了表征。实验表明,在波长为393 nm激发光的激发下,所得到的产品在612 nm处有明显的特征发射峰,对应于Eu3+的(5D07F2)特征跃迁发射。这一荧光性质使得该材料在荧光灯、显示系统和光电设备应用中具有广阔的前景。同时我们还探讨了微球的形态、Eu3+的掺杂量及焙烧温度对花状微球荧光性能的影响。  相似文献   

3.
模板法是制备无机中空微纳米球的重要方法之一. 本文以苯乙烯为单体, 通过乳液聚合得到粒径约为620 nm的单分散聚苯乙烯(PS)微球. 以磺化后的聚苯乙烯(PSS)微球为模板, 利用阴阳离子静电吸附作用, 将PSS与前驱体SnSO4中的Sn2+结合. 通过Sn2+在乙醇-水介质中的水解作用得到核-壳复合结构, 再经高温煅烧, 得到SnO2中空微纳米球. 实验对前驱体的浓度、表面活性剂的用量、反应时间及模板选择等方面做了研究,通过扫描电镜(SEM)、X 射线衍射(XRD)、红外(IR) 光谱、热重分析(TGA)、H2 程序升温还原(H2-TPR)、Brunauer-Emmett-Teller (BET)比表面积等技术深入探究SnO2中空微纳米球的结构, 并对比中空SnO2与实心粒子的氧化还原特性. BET和H2-TPR显示将SnO2制备成微纳米空心球后其比表面积增大, 表面氧空位明显增多, 氧化活性明显提高. 从IR 及XRD推断核-壳结构形成机理, 进而优化出简单合理的实验方案, 获得表面光滑、结构致密, 包覆厚度可控的SnO2中空微纳米球.  相似文献   

4.
以硝酸镁(Mg(NO3)2·6H2O)和硼砂(Na2B4O7·10H2O)为原料, 稀土元素Eu3+为激活剂, 采用聚乙烯吡咯烷酮(PVP)辅助共沉淀法得到前驱体, 并通过焙烧制备了多级结构Mg3B2O6: Eu3+花状微球。通过XRD、SEM、TEM以及荧光光谱等手段分别对前驱体煅烧产物的结构、形貌、组成和荧光特性进行了表征。实验表明, 在波长为393 nm激发光的激发下, 所得到的产品在612 nm处有明显的特征发射峰, 对应于Eu3+的(5D07F2)特征跃迁发射。这一荧光性质使得该材料在荧光灯、显示系统和光电设备应用中具有广阔的前景。同时我们还探讨了微球的形态、Eu3+的掺杂量及焙烧温度对花状微球荧光性能的影响。  相似文献   

5.
采用水热合成法制备了纯菱形相的Zn2GeO4纳米棒,研究了水热制备前驱体溶液的pH值对材料尺寸及形貌的影响以及Zn2GeO4纳米棒的光学性质。扫描电子显微镜(SEM)测试结果表明,随着前驱体溶液pH值的变化样品逐渐由微米级块状结构生长成为纳米颗粒,并且进一步形成纳米棒结构。纳米棒的尺寸由长200 nm变化到500 nm。室温光致发光(PL)光谱中观察到位于450和530 nm两个不同的发光峰,其分别源于Zn2GeO4的不同缺陷能级。  相似文献   

6.
采用水热法在温和的条件下合成了具有规则外形的六方棱柱状NaNdF4纳米棒。X射线衍射(XRD)分析表明:产物为纯六方相NaNdF4,场发射扫描电镜(SEM)分析表明产物形貌为棱柱状纳米棒,长约为550nm,棒的端部呈规则六边形,边长约为85nm。高分辨透射电子显微镜(HRTEM)和选区电子衍射(SD)显示所得样品为良好的单晶。NaNdF4晶体的生长动力学过程表明:螯合剂(EDTA-Na2)与稀土金属离子间的螯合作用受pH值影响,导致成核速度变化,进而影响NaNdF4纳米晶的最终尺寸和形貌。室温下的NaNdF4纳米棒的发光峰位于红外光范围(λ=892,1058,和1342nm),其最强发射峰位于1058nm,对应于Nd3+4F3/24I11/2f-f跃迁。  相似文献   

7.
采用一步水热法合成了Cu纳米粒子负载二氧化钛纳米管材料. 利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、能谱仪(EDS)等对材料的相组成、形貌以及形成过程进行了研究. 制得的Cu-TiO2复合纳米材料长度约为100 nm, 直径10-15 nm, 其上负载的Cu纳米粒子尺寸约为5 nm. BET比表面积测试表明实验制备的Cu-TiO2复合纳米管的比表面积为154.67 m2·g-1. 通过调节水热反应时间和钛前驱体种类, 研究了该复合纳米管材料的形成机制. 结果表明: 非晶态的钛源对于成功一步合成Cu-TiO2复合纳米管至关重要. 同时, 实验中观察到铜纳米粒子的尺寸随水热反应时间延长而减小(反奥氏陈化过程), 这一现象有助于纳米粒子的可控合成.紫外-可见吸收光谱表明该复合纳米管在350-800 nm范围内有较强的吸收, 并在550-600 nm范围观察到Cu的表面等离子激元吸收带. Cu-TiO2界面处形成的肖特基势垒有助于加快光生载流子的输运, 提高光生电子-空穴对的分离效率. 光催化实验表明Cu-TiO2复合纳米管在可见光下具有较高的催化活性.  相似文献   

8.
以稀土硝酸盐-葡萄糖的混合溶液作为前驱体,采用一步水热法和随后的热处理得到了多层核壳结构Gd2O3∶Eu3+空心微球,并用X-射线衍射(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)、X-射线能量色散光谱(EDS)和荧光光谱等测试手段对所得样品进行了表征。结果表明:所得空心球样品为纯的立方相的Gd2O3。具有规则的多层核壳空心结构,空心球的直径在2~3 μm左右,壁厚约为100 nm,并且Gd2O3∶Eu3+空心球是由尺寸约为30 nm的球形纳米颗粒自组装而成。样品中含有Gd、Eu、O元素。该空心球样品具有强的Eu3+的特征红光发射以及长的荧光寿命,可以用来作为时间分辨荧光标记物。  相似文献   

9.
以Ag纳米颗粒为牺牲模板,H2PdCl4为前驱体,抗坏血酸为还原剂,聚乙烯吡咯烷酮为表面活性剂,在70℃下采用电偶置换法结合还原法制备出AgPd双金属纳米空心球。采用紫外可见光谱、粉末X射线衍射、透射电镜结合能量色散等手段对由不同体积的0.01 mol·L-1 H2PdCl4溶液制备的产物进行结构表征。结果表明,随着H2PdCl4溶液体积的增加,产物的空心化程度逐渐升高,晶粒的尺寸逐渐增大。当H2PdCl4溶液体积为120 μL时,合成的AgPd双金属纳米空心球组成和结构较为均匀,其粒径约为25 nm,壳层厚度2~3 nm。双金属中,由于Ag和Pd电负性的差异,电子从Ag转移到了Pd,使Pd表面出现电子富集区,显著提高了其催化效率。将所合成的AgPd双金属以及纯金属Ag和Pd作为催化剂,分别用于硼氢化钠催化还原4-硝基苯酚的反应,发现AgPd双金属的催化性能远高于纯金属Ag和Pd,其中AgPd-120纳米空心球(H2PdCl4溶液体积120 μL)作催化剂时的反应速率常数最高,是同等尺寸纯Ag纳米球的24.0倍,纯Pd纳米立方体的14.7倍。  相似文献   

10.
以Ag纳米颗粒为牺牲模板,H2PdCl4为前驱体,抗坏血酸为还原剂,聚乙烯吡咯烷酮为表面活性剂,在70 ℃下采用电偶置换法结合还原法制备出AgPd双金属纳米空心球。采用紫外可见光谱、粉末X射线衍射、透射电镜结合能量色散等手段对由不同体积的0.01 mol·L-1 H2PdCl4溶液制备的产物进行结构表征。结果表明,随着H2PdCl4溶液体积的增加,产物的空心化程度逐渐升高,晶粒的尺寸逐渐增大。当 H2PdCl4溶液体积为 120 μL时,合成的 AgPd双金属纳米空心球组成和结构较为均匀,其粒径约为 25 nm,壳层厚度 2~3 nm。双金属中,由于 Ag 和 Pd 电负性的差异,电子从 Ag 转移到了 Pd,使 Pd 表面出现电子富集区,显著提高了其催化效率。将所合成的AgPd双金属以及纯金属Ag和Pd作为催化剂,分别用于硼氢化钠催化还原4-硝基苯酚的反应,发现AgPd双金属的催化性能远高于纯金属Ag和Pd,其中AgPd-120纳米空心球(H2PdCl4溶液体积120 μL)作催化剂时的反应速率常数最高,是同等尺寸纯Ag纳米球的24.0倍,纯Pd纳米立方体的14.7倍。  相似文献   

11.
分别通过自组装法(AS)和浸渍法(WI)制备得到纳米催化剂Pt/γ-Al2O3-AS和Pt/γ-Al2O3-WI, 并用于评价甲苯、异丙醇、丙酮、乙酸乙酯等易挥发性有机物(VOCs)的氧化性能. 通过各种表征手段探究了催化剂形态、结构及表面性质与催化剂氧化活性的关系. 结果表明, Pt/γ-Al2O3-AS在低温下即可实现VOCs的完全氧化. 在气体浓度(体积分数)为1000×10-6, 空速为18000 mL·g-1·h-1的条件下, 甲苯、异丙醇、丙酮、乙酸乙酯被Pt/γ-Al2O3-AS催化剂完全氧化的温度分别为130、135、145、215℃, 展现出了优异的氧化性能, 且具有很好的稳定性. 该催化剂较高的比表面积、较小的Pt纳米粒径、较好的Pt纳米颗粒分散度、更好的低温还原效果及丰富的表面羟基是具有较高催化活性的重要因素.  相似文献   

12.
CoO-MoO3/γ-Al2O3 and NiO-MoO3/γ-Al2O3 catalysts were prepared by the reaction of α-boehmite (α-AlOOH) with MoO3 in an aqueous paste, followed by the reaction of the MoO3/α-AlOOH catalyst with Co(OH)2·CoCO3 or 2NiCO3·3Ni(OH)2·4H2O in an aqueous paste, and by subsequent drying and/or calcination. The deposited MoO3 functioned as a thermal stabilizer inhibiting the sintering of the Al2O3 phase during calcination. The deposited Co and Ni were efficient activity promoters in benzothiophene hydrodesulfurization.  相似文献   

13.
采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备. 通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能. 结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P. 不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340 ℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.  相似文献   

14.
The effective utilization of various biomolecules for creating a series of mesoporous boehmite (γ-AlOOH) and gamma-alumina (γ-Al2O3) nanosheets with unique hierarchical multilayered structures is demonstrated. The nature and concentration of the biomolecules strongly influence the degree of the crystallinity, the morphology, and the textural properties of the resulting γ-AlOOH and γ-Al2O3 nanosheets, allowing for easy tuning. The hierarchical γ-AlOOH and γ-Al2O3 multilayered nanosheets synthesized by using biomolecules exhibit enhanced crystallinity, improved particle separation, and well-defined multilayered structures compared to those obtained without biomolecules. More impressively, these γ-AlOOH and γ-Al2O3 nanosheets possess high surface areas up to 425 and 371 m2 g−1, respectively, due to their mesoporous nature and hierarchical multilayered structure. When employed for molybdenum adsorption toward medical radioisotope production, the hierarchical γ-Al2O3 multilayered nanosheets exhibit Mo adsorption capacities of 33.1–40.8 mg g−1. The Mo adsorption performance of these materials is influenced by the synergistic combination of the crystallinity, the surface area, and the pore volume. It is expected that the proposed biomolecule-assisted strategy may be expanded for the creation of other 3D mesoporous oxides in the future.  相似文献   

15.
采用程序升温反应法制备了钝化态、还原钝化态和新鲜态Mo2C/γ-Al2O3催化剂,结合原位红外光谱表征技术和反应性能评价,考察、比较了三种催化剂苯加氢反应活性.原位红外光谱结果表明,新鲜态Mo2C/γ-Al2O3催化剂在室温就显示了较好的苯加氢反应活性,表现了类贵金属的催化活性.CO吸附在反应前后新鲜态Mo2C/γ-Al2O3催化剂上的对比结果表明,低价态的Mo位(Moδ+(0δ2))是苯加氢反应活性中心.三种催化剂的反应活性结果表明,新鲜态Mo2C/γ-Al2O3催化剂反应活性最好,催化剂寿命最长,失活之后在500°C下H2处理即可恢复原有活性.  相似文献   

16.
Mesoporous YSZ–γ-Al2O3 membranes were coated on α-Al2O3 (Ø2 mm) tube by dipping the α-Al2O3 support tube into mixed sol consists of nano-size YSZ and bohemite particles followed by drying and calcination at 600 °C. Addition of bohemite in YSZ sol helped a good adhesion and uniform coating of the membrane film onto α-Al2O3 support. The quality of the mesoporous YSZ–γ-Al2O3 membranes was evaluated by the gas permeability experiments. The number of defects was minimized when the γ-Al2O3 content became more than 40%. Addition of γ-Al2O3 inhibited the crystal growth of YSZ, sintering shrinkage and distortion stress. Increase of calcination temperature and time results in the increase of pore size and N2 permeance. A hydrogen perm-selective membrane was prepared by filling palladium into the nano-pores of YSZ–γ-Al2O3 layer by vacuum-assisted electroless plating. Crystal growth of palladium was observed by thermal annealing of the membrane at 600 °C for 40 h. The Pd–YSZ–γ-Al2O3 composite membrane revealed improved thermal stability allowing long-term operation at elevated temperature (>500 °C). This has been attributed to the improved fracture toughness of YSZ–γ-Al2O3 layer and matching of thermal expansion coefficient between palladium and YSZ. Although fracture of the membrane did not occur, decline of H2 flux was observed when the membrane was exposed in 600 °C. This has been attributed to the agglomeration of palladium particles by crystal growth and dense packing into the pore networks of YSZ–γ-Al2O3 by elevation of temperature.  相似文献   

17.
为了提高苯乙炔加氢反应中的苯乙烯选择性, 本文采用“胶体-等体积浸渍”两步法制备了Pd-Cu/γ-Al2O3双金属催化剂. 利用高分辨率透射电镜(HRTEM)、X射线光电子能谱(XPS)、CO脉冲化学吸附、N2物理吸附、电感耦合等离子体原子发射光谱(ICP-AES)等技术表征了Pd-Cu/γ-Al2O3的结构性质, 考察了Cu/Pd 摩尔比、Pd负载量以及金属引入顺序对Pd-Cu/γ-Al2O3催化苯乙炔选择性加氢性能的影响. 结果表明, 与Pd/γ-Al2O3单金属催化剂相比, Pd-Cu/γ-Al2O3的苯乙烯选择性大幅度提高, 尤其是当Pd负载量为0.3%(w), 且Cu/Pd摩尔比为0.6时, Pd-Cu/γ-Al2O3表现出优异的加氢选择性; 在0.1 MPa和40 ℃下, 当苯乙炔转化率为90%时, 双金属催化剂的苯乙烯选择性可达95%; 当转化率达到99%以上时, 苯乙烯选择性仍保持在82%左右. 分析表明, Pd-Cu/γ-Al2O3中形成了Pd-Cu合金, 但是两种金属间不存在电子转移, Cu对Pd的几何效应才是导致Pd-Cu/γ-Al2O3苯乙烯选择性增加的主要原因.  相似文献   

18.
采用等体积浸渍法制备了不同负载量的La2O3/γ-Al2O3催化剂,并考察了负载量和反应温度对催化剂用于二甲醚二氧化碳重整制氢反应的性能影响。结果表明,反应温度为550℃、La2O3负载量为15%时,催化剂表现出最好的性能:二甲醚的转化率为100%,二氧化碳的转化率达到85.4%,产物氢气的选择性高达93.3%,一氧化碳的选择性为76.04%,副产物甲烷的选择性仅为6.3%。550 ℃时其平均积炭速率为1.387 5 mg/(g·h)。研究还利用XRD、BET、TEM、TG等方法对催化剂进行了表征。  相似文献   

19.
The influence of titanium oxide on the surface interactions of MO (M=Cu and Ni)/γ-Al2O3 catalysts has been studied by using XRD, LRS and XPS. For the catalysts with titania loadings lower than 0.56 mmol Ti4+/100 m2 Al2O3 (i.e., the dispersion capacity), the dispersion of MO oxides on the surface of γ-Al2O3 support is significantly suppressed by the dispersed Ti4+ ions. The inhibiting effect is dependent on the properties of MO oxides. When titania loadings are considerably higher than the dispersion capacity, MO oxides exhibit a rather stronger interaction with the formed TiO2 particles than the γ-Al2O3 support, and some of the dispersed M2+ ions might be accommodated by the vacant sites on TiO2. Therefore, the catalysts can be considered as the compositions of MO/TiO2 and MO/TiO2/γ-Al2O3 (dispersed titania). TPR results show that either dispersed titania or formed TiO2 particles can promote the reduction of copper oxide species, but the latter to a greater extent. Based on the consideration of the incorporation model, it is proposed that the surface structure of the support plays an important role in surface interactions.  相似文献   

20.
在γ-Al2O3载体上用等体积浸渍法浸渍Pd、MnOx活性组分,然后涂覆于堇青石基体上制备Pd-MnOx/γ-Al2O3整体式催化剂.分别用X射线衍射(XRD)、H2-程序升温还原(H2-TPR)、低温N2吸附-脱附及X射线光电子能谱(XPS)对制备的催化剂进行表征.研究了Pd、MnOx浸渍顺序对催化剂活性、氧化还原性能及织构性质的影响.实验结果表明,Pd、MnOx共浸渍较分别浸渍制备的催化剂活性好,Pd和MnOx之间存在一定的协同作用.考察了不同载体如La-Al2O3、SiO2、γ-Al2O3和Zr-Al2O3对催化剂活性、氧化还原性能、织构性质及表面电子性能的影响.研究表明,以La-Al2O3或SiO2为载体的催化剂活性最好,即,14°C时O3转化率为82%,完全转化温度为36°C.γ-Al2O3载体次之,Zr-Al2O3载体较差.不同载体制备的催化剂中MnOx的氧化还原性能顺序为:PdMnOx/SiO2Pd-MnOx/La-Al2O3Pd-MnOx/γ-Al2O3Pd-MnOx/Zr-Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号