首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
Thirty nanometer diameter Co-Pt nanowires of different composition were fabricated by electrodepositing the Co and Pt atoms to nanoporous anodized aluminium oxide (AAO) templates. The structure and magnetic properties are studied by transmission electron microscopy (TEM), induction-coupled plasma spectrometer (ICP), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The as deposited nanowires with Pt content about 50 at.% present a single ferromagnetic phase of fcc CoPt. When the Pt content of the nanowires varies from about 55 to about 75 at.%, the nanowires include a soft phase of fcc CoPt3 and a relatively hard phase of fcc CoPt and the two phases are separate as seen from the hysteresis loops. After annealing to 600 °C, the two phases coupled completely and the coupled phase has the same coercivity as the original hard one.  相似文献   

2.
Co nanowire arrays with three typical diameters of 20, 50 and 120 nm have been fabricated into anodic alumina oxide templates using an ac electrodeposition method. It is found that the crystal texture of the Co nanowires depends on the pH value of the deposition electrolyte. X-ray diffraction results show that the (1 0 0) texture appears at pH 6.2, while the diffraction peaks of (1 0 0) and (1 0 1) appear at pH 6.4 with the diameter of 20 nm. In addition, the (0 0 2), (1 0 0) and (1 0 1) peaks appear with an increase of pH value for the nanowire arrays with diameters of 50 and 120 nm, respectively. Magnetic measurements indicate the effect of structure on the magnetic properties of the nanowire arrays, which depend strongly on the different diffraction peaks, as adjusted by the pH value.  相似文献   

3.
In this work effect of the carrier fluid, hexane, on the magnetic properties of 4.7 nm sized FePt nanoparticles is investigated. Nanoparticles are synthesized by chemical method. Structural and magnetic characterizations confirmed that samples are monodispersed with disordered face centered cubic (fcc) crystal structure and, magnetically, exhibit two blocking behaviors; the first is at 27 K and second at 110 K. Carrier fluid of particles, hexane, is found to influence the blocking of 7% of the total magnetic moments in the system by freezing at low temperatures resulting in a two blocking phenomena even for nanoparticles that are monodispersed with narrow particle size distribution.  相似文献   

4.
Metallic (Ni, Co, Cu and Fe) nanowires were fabricated by electrodeposition into anodic aluminum oxide (AAO) template. In this work, we have studied the effect of the electrode potential on the microstructure and magnetic properties of nanowires. Transmission electron microscopy (TEM) results showed that the metal nanowires were single-crystal. Cu and Ni nanowires had the same orientation along the [2 2 0] direction, while Co had a preferred orientation along the [1 0 0] direction. Fe nanowires had a preferred orientation along the [2 0 0] direction. The growth mechanisms are probably due to the competition growth of the adjacent grains and the confinement of growth in the nano-sized hole of the AAO template. Results showed that single crystal or highly textured nanowires had better magnetic properties compared with that of polycrystal nanowires in terms of coercivity and squareness.  相似文献   

5.
By means of a porous template without removing the aluminium substrate, a technique of pulsed electrodeposition with an intermittent symmetric square pulse has successfully been applied to fabricate Ni nanowire array. The as-obtained nanowires have a diameter of about 60 nm and exhibit high aspect ratio of more than 50. The electron diffraction pattern investigation demonstrates that the nanowires are single crystal. Moreover, a highly preferential orientation [2 2 0] of the as-obtained Ni nanowires with high purity decided by XRD has been obtained, and the preferred orientation is weakened remarkably by an annealing process. Furthermore, the investigation of magnetic properties by VSM indicates that the as-obtained Ni nanowire array has an obvious magnetic anisotropy and exhibits a good thermal stability.  相似文献   

6.
Ultrafine nanowires of Fe-Co with a diameter around 15 nm have been fabricated by electrodeposition method using anodic porous alumina as a template. The alloy nanowires were in the form of arrays and consisting of polycrystalline structures. They showed obvious shape anisotropy parallel to the axis of nanowires and the perpendicular coercivity (Hc) was found to be 2576.8 Oe which is higher than any coercivity value reported in the literature. The effects of critical factors such as heat treatment and temperature of annealing on the structure and magnetic properties of the ultrafine nanowire arrays were studied and discussed.  相似文献   

7.
The L10 CoPt films with (0 0 1) preferred orientation are achieved by fabricating on the glass substrates and post annealing at 600° C for 30 min. The preferred orientation of [ZrO2/CoPt]n/Ag films dependence of the Ag underlayer thickness, ZrO2 and CoPt interlayer thickness is investigated. A large perpendicular magnetic anisotropy and a nearly perfect L10 CoPt (0 0 1) texture are obtained in the [ZrO2 (3 nm)/CoPt (5 nm)]3/Ag (10 nm) film. The existence of ZrO2 plays an important role in reducing the intergranular interactions and in determining the size of CoPt grains. Magnetic reversal in textured CoPt films are close to a Stoner-Wolfarth rotation.  相似文献   

8.
用磁过滤脉冲真空电弧沉积方法制备了CoPt(FePt) C纳米复合薄膜,并在不同温度下进行了退火处理,研究了薄膜中碳的含量以及退火温度对薄膜结构与磁性能的影响.制备态薄膜经过足够高的温度退火后,x射线衍射和磁力显微镜分析发现,在碳基质中生成了面心四方相的CoPt(FePt)纳米颗粒.对于特定组分为Co24Pt31C45和Fe43Pt35C22的薄膜,矫顽力以及颗粒尺寸都随退火温度的升高而增大,当退火温度为700℃时,Co24Pt31C45薄膜的矫顽力为21×105A/m,晶粒尺寸为17nm;当退火温度为650℃时,Fe43Pt35C22相应值分别为28×105A/m和105nm. 关键词: 磁记录材料 磁性薄膜 CoPt FePt纳米复合薄膜  相似文献   

9.
Jisang Hong 《Surface science》2006,600(11):2323-2328
Based on the full-potential linearized augmented plane wave (FLAPW) calculations, various magnetic properties of ultra thin face centered cubic (fcc) Co(0 0 1) film and V adsorbed systems on Co(0 0 1) surface are explored. It was found that the V film grown on fcc Co(0 0 1) surface has large induced magnetic moment and the direction of magnetization is antiparallel to that of Co atom in the submonolayer coverage. Very interestingly, we found that the surface alloy and 0.5 ML adsorbed V/Co(0 0 1) systems have perpendicular magnetocrystalline anisotropy and the magnitude of anisotropy energy in 0.5 ML V on fcc Co(0 0 1) surface is greatly larger than that of surface alloy, while we observed in-plane magnetization in pure fcc Co(0 0 1) film. It was found that the spin-orbit interaction through spin-flip process cannot be ignored, therefore the simple relation with orbital anisotropy is not applicable in the interpretation of magnetocrystalline anisotropy.  相似文献   

10.
CoCu alloy nanowire arrays embedded in anodic alumina template were fabricated by ac pulse electrodeposition. Different off-times between pulses in an electrolyte with constant concentration of Co+2 and Cu+2 and acidity of 4 were employed. The effect of deposition parameters on the alloy contents, microstructures and magnetic properties of CoxCu1−x nanowires were studied. It is shown that Co content decreased by increasing the off-time between pulses in a wide range (x = 0.53-0.07). These results are in consistence with saturation magnetization, which was reduced with increase in the off-time between pulses. It was also found that by optimizing the off-times, it is possible to fabricate CoCu nanowires with mixed phase of hcp Co, fcc Cu and fcc CoCu crystal phase.  相似文献   

11.
Crystalline Co nanowires were pulse electrodeposited into nanoporous aluminum oxide template having an ultra-thinned barrier layer. The effects of off-time between pulses and electrolyte acidity on the microstructure and magnetic properties of the nanowires were investigated. Increasing the off time between pulses increased the crystallinity and the alignment of easy axis with the wire axis. The rate of these increments was seen to depend on the electrolyte acidity and reached its maximum at pH=5.25 electrolyte acidity. Optimizing the crystallinity and crystal orientation, a coercivity value of 3320 Oe and a squareness of>90% were obtained for pure Co nanowires. A 10% increase in coercivity was found after annealing the samples.  相似文献   

12.
CoPt3/Co multilayered nanowire(NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide(AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction(XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic( fcc) structures. In the UV-visible absorption spectra,CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3 NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies.  相似文献   

13.
Room temperature magnetization of two dimensional (2D) arrays of cobalt nanowires (NWs) having diameter 50 and 150 nm prepared by electrodeposition are studied in details. Diffraction patterns of the NWs reveal that the crystallites of the NWs become more textured on decreasing their diameter. Magnetic hysteresis loop measurements show the magnetic easy axis changes its direction from axial to perpendicular direction of NWs on increasing the length of the NWs. The magnetostatic interaction among the NWs, known as the key factor in defining the easy direction is found not to be dipolar at all the circumstances. An aspect ratio (length/diameter of NWs) dependence of the non-dipolar interaction in 150 nm NWs is evident from the static magnetization as well as from ferromagnetic resonance (FMR) measurements.  相似文献   

14.
The effect of magnetic field annealing of magnetron sputtered CoPt alloy films and Co/Pt bilayers on the crystallographic texture of the obtained chemically ordered (L10) CoPt films is presented. In CoPt alloy films the main effect of the magnetic field is to suppress (1 1 1) growth in the early stages of L10 formation whereas the development of (0 0 1) versus (1 0 0) texture is related to chemical ordering strain. A higher degree of (0 0 1) texture is obtained by magnetically annealing Co/Pt bilayers since the initial (1 1 1) texture in the as-sputtered films is avoided and Co-Pt alloying occurs in the presence of the magnetic field.  相似文献   

15.
Jinxia Xu  Yi Xu 《Applied Surface Science》2007,253(17):7203-7206
Ordered binary Co-Ni nanowire arrays with different components have successfully been fabricated by ac electrodeposition. The as-obtained nanowires exhibit a diameter of about 49.2 nm and aspect ratio of more than 30. A highly preferential orientation of the Co-Ni nanowires has been obtained by XRD. The magnetic properties of Co-Ni nanowire arrays determined by VSM are as the function of the Co-Ni components. The maximum value of coercivities perpendicular to the array is 2073 Oe. However, the magnetic properties of such nanowire arrays exhibited a bad thermal stability at the medium temperature of 200 °C.  相似文献   

16.
Ordered 20 nm Fe-Pd nanowire arrays with different compositions have been fabricated by alternating current electrodeposition into nanoporous anodic alumina. The structural and magnetic properties of the arrays were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). When Fe content is lower than 46 at.%, Fe-Pd alloy phase with fcc structure forms for the as-deposited. After annealing the alloy structure remains unchanged, but the coercivity (HC) and squareness (Mr/Ms) increase. When Fe content is up to 60 at.%, α-Fe and Fe-Pd phases with fcc structure coexist for the as-deposited. After annealing the nanowires consist of a uniform Fe-Pd phase with fcc structure and the coercivity and squareness decrease. The change of the structure and magnetic properties with the alloy composition and annealing are explained reasonably.  相似文献   

17.
Ni nanowire arrays with different diameters have now been extended to directly fabricate in porous anodic alumina oxide (AAO) templates on Ti/Si substrate by direct current (DC) electrodeposition. An aluminum film is firstly sputter-deposited on a silicon substrate coated with a 300 nm Ti film. AAO/Ti/Si substrate is synthesized by a two-step electrochemical anodization of the aluminum film on the Ti/Si substrate and then used as template to grow Ni nanowire arrays with different diameters. The coercivity and the squareness in parallel direction of Ni nanowires with about 10 nm diameters are 664 Oe and 0.90, respectively. The Ni nanowire arrays fabricated on AAO/Ti/Si substrates should lead to practical applications in ultrahigh-density magnetic storage devices because of the excellent properties.  相似文献   

18.
The structural and magnetic properties of 3-nm-thick CoPt alloys grown on WSe2(0 0 0 1) at various temperature are investigated. Deposition at room temperature leads to the formation of a chemically disordered fcc CoPt alloy with [1 1 1] orientation. Growth at elevated temperatures induces L10 chemical order starting at 470 K accompanied with an increase in grain size and a change in grain morphology. As a consequence of the [1 1 1] growth direction, the CoPt grains can adopt one of the three possible variants of the L10 phase with tetragonal c-axis tilted from the normal to the film plane direction at 54°. The average long-range order parameter is found to be 0.35(±0.05) and does not change with the increase in the deposition temperature from 570 to 730 K. This behavior might be related to Se segregation towards the growing facets and surface disorder effects promoted by a high surface-to-volume ratio. Magnetic studies reveal a superparamagnetic behavior for the films grown at 570 and 730 K in agreement with the film morphology and degree of chemical order. The measurements at 10 K reveal the orientation of the easy axis of the magnetization lying basically in the film plane.  相似文献   

19.
Ordered Co-Pb nanowire arrays embedded in anodic alumina template were successfully fabricated by electrodeposition. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations revealed that the Co-Pb nanowires were polycrystalline with uniform diameters around 20 nm and lengths up to several micrometers. Magnetic measurements showed that the coercivity and remanence of the as-deposited Co-Pb nanowires decreased with the increase of the Pb content. After annealing the Co-Pb nanowires present higher coercivities (2.4-2.5 kOe) than that of pure Co nanowires (2.1 kOe) and the dependence of coercivity and remanence on the Pb content is inconspicuous. A phase separation of Co and Pb occurred after annealing. The familiar pinning model was employed to explain the above experimental results.  相似文献   

20.
Co-Pt-C颗粒膜的磁性   总被引:3,自引:0,他引:3       下载免费PDF全文
郑鹉  王艾玲  姜宏伟  周云松  李彤 《物理学报》2004,53(8):2761-2765
利用磁控溅射方法制备多层膜后,再经热处理得到Co-Pt-C颗粒膜.热处理使Co-Pt颗粒从非晶相转向fcc CoPt3和fct CoPt稳定有序相,C则保持非晶态.Pt成分占Co,Pt总体积的70%时,膜的矫顽力Hc可超过400?kA/m.C插层厚度为0.2—0.6nm时,Hc最大,且在磁滞回线上出现“肩膀”.分析认为这是由于存在两个磁性不同的Co-Pt晶相,受C成分比的影响,使它们之间的耦合性质和强度不同造成的. 关键词: Co Pt C 磁滞回线 颗粒膜  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号