首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Anomalous transport properties of 40-nm-thick single-crystal Bi(111) films grown on Si(111)-7 × 7 substrates is investigated. The magnetoresistance (MR) of the films in perpendicular magnetic field shows a regular positive behavior in the temperature range 2–300K, the MR in parallel field (B||) displays a series of interesting features. Specifically, we observe a change of the MR (B||) behavior from positive to negative when the temperature is below 10K. In the range 10–170 K, the MR (B||) is negative in the investigated field of 9T. When T 〉 170 K, a positive MR appears in the high field regime. The low temperature MR(B||) behavior in the parallel field can be understood by the competition between weak localization and weak anti-localization (WAL). Furthermore, our results suggest that the WAL is dominated by the interface carriers.  相似文献   

2.
Ferromagnetic Ni-Mn-Ga films were fabricated by depositing on MgO (001) substrates at temperatures from 673 K to 923 K. Microstructure, crystal structure, martensitic transformation behavior, and magnetic properties of the films were studied. With increasing deposition temperature, the surface morphology of the films transforms from granular to continu- ous. The martensitic transformation temperature is not dependent on deposition temperature; while transformation behavior is affected substantially by deposition temperature. X-ray analysis reveals that the film deposited at 873 K has a 7M marten- site phase, and its magnetization curve provides a typical step-increase, indicating the occurrence of magnetically induced reorientation (MIR). In situ magnetic domain structure observation on the film deposited at 873 K reflects that the marten- sitic transformation could be divided into two periods: nucleation and growth, in the form of stripe domains. The MIR occurs at the temperature at which martensitic transformation starts, and the switching field increases with the decrease of temperature due to damped thermal activation. The magnetically induced martensitic transformation is related to the difference of magnetization between martensite and austenite. A shift of martensite temperature of dT/dH = 0.43 K/T is observed, consistent with the theoretical value, 0.41 K/T.  相似文献   

3.
A new iron film system,deposited on silicone oil surfaces by vapour phase deposition method,has been fabricated and its formation mechanism as well as orderly structures has been studied,It is found that the formation mechanism of the films obeys a two-stage growth model,which is similar to that to the other metallic films on liquid substrates,Large and orderly structures are observed in the continuous iron films.The experiments show that the orderly spatial structures result from the local material gathering in these nearly free sustained films.  相似文献   

4.
Bi1-xSmxFeO3 films with x= 0, 0.03, 0.05, 0.07 and 0.10 are prepared on LaNiO3/Si(100) substrates by the sol-gel method. X-ray diffraction patterns reveal that pure phase films with random orientations are fabricated. The results of SEM indicate that films with denser surfaces are obtained by Sm substitution. At the doping level of x=0.05, remnant polarization Pr increases to 3.19 μC/cm2 from 1.12 μC/cm2 of the un-substituted BiFeO3 film and shows enhanced ferroelectricity at room temperature. Because of the low leakage current density in the high electric field region, a polarization hysteresis loop with remanent polarization of 5.15 μC/cm2 is observed in the 0.10 Sm-substituted BiFeO3 films at the applied electric field of 226 kV/cm. Through the substitution of Sm, the leakage current density is reduced for the films with x= 0.07-0.10.  相似文献   

5.
Through magnetization measurement with a SQUID magnetometer the heat treatment optimization of an international thermonuclear experimental reactor (ITER)-type internal-Sn Nb3Sn superconducting wire has been investigated. The irreversibility temperature T^* (H), which is mainly dependent on A15 phase composition, was obtained by a warming and cooling cycle at a fixed field. The hysteresis width △M(H) which reflects the flux pinning situation of the A15 phase is determined by the sweeping of magnetic field at a constant temperature. The results obtained from differently heat-treated samples show that the combination of T^* (H) with AM(H) measurement is very effective for optimizing the heat reaction process. The heat treatment condition of the ITER-type wire is optimized at 675℃/128 h, which results in a composition closer to stoichiometric Nb3Sn and a state with best flux pinning.  相似文献   

6.
Boron nitride (BN) thin films with cubic boron nitride (c-BN) phase were prepared on the (100)-oriented surface of n-Si (0.008-0.02 Ωm) by rf magnetron sputtering physical vapor deposition. The c-BN content is determined to be around 50% by using Fourier transform infrared spectroscopy for the BN thin films. The field emission characteristics of BN films were measured in an ultrahigh vacuum system. It is found that the field emission of the BN film with c-BN phase is evidently more excellent than that without c-BN phase. A turnon field of 5 V/μm and a current of 460μA/cm^2 were obtained for the BN film with c-BN phase. The Fowler-Nordheim plots of emission characteristics of BN films indicate a straight line, which suggests the presence of the FN tunneling.  相似文献   

7.
Epitaxial La2/3Cal/3MnO3 thin films grown on LaA103 (001) substrates were irradiated with low-energy 120-keV H+ ions over doses ranging from 1012 ions/cm2 to 1017 ions/cm2. The irradiation suppresses the intrinsic insulator-metal (I-M) transition temperature and increases the resistance by reducing the crystallographic symmetry of the films. No irradiation-induced columnar defects were observed in any of the samples. The specific film irradiated at a critical dose around 8 x 1015 ions/cm2 is in a threshold state of the electric insulator where the I-M transition is absent. In an external field of 4 T or higher, the I-M transition is restored and thus an enormous magnetoresistance is observed, while a negative temperature coefficient resumes as the temperature is reduced further. Magnetic relaxation behavior is confirmed in this and other heavily irradiated samples. The results are interpreted in terms of the displacement of oxygen atoms provoked by ion irradiation and the resulting magnetic glassy state, which can be driven into a phase coexistence of metallic ferromagnetic droplets and the insulating glass matrix in a magnetic field.  相似文献   

8.
The crystal structure, phase transition, and magnetocaloric effect in Ni42.8Mn40.3Co5.7Sn11.2 alloy are investigated by structure analysis and magnetic measurements. A large magnetic entropy change of 45.6 J/kg.K is obtained at 215 K under a magnetic field of 30 kOe (1 Oe = 79.5775 A.m-1). The effective refrigerant capacity of Ni42.8Mn40.3Co5.7Sn11.2 alloy reaches 72.1 J/kg under an applied field changing from 0 to 30 kOe. The external magnetic field shifts the martensitic transition temperature about 3-4 K/10 kOe towards low temperature, indicating that magnetic field can retard the phase transition to a certain extent. The origin of large magnetic entropy change is discussed in the paper.  相似文献   

9.
伍展文  李洁  黎松林  郑东宁 《中国物理 B》2013,22(8):87503-087503
Epitaxial La 2/3 Ca 1/3 MnO 3 thin films grown on LaAlO 3 (001) substrates were irradiated with low-energy 120-keV H 2 + ions over doses ranging from 10 12 ions/cm 2 to 10 17 ions/cm 2 . The irradiation suppresses the intrinsic insulator-metal (I-M) transition temperature and increases the resistance by reducing the crystallographic symmetry of the films. No irradiation-induced columnar defects were observed in any of the samples. The specific film irradiated at a critical dose around 8 × 10 15 ions/cm 2 is in a threshold state of the electric insulator where the I-M transition is absent. In an external field of 4 T or higher, the I-M transition is restored and thus an enormous magnetoresistance is observed, while a negative temperature coefficient resumes as the temperature is reduced further. Magnetic relaxation behavior is confirmed in this and other heavily irradiated samples. The results are interpreted in terms of the displacement of oxygen atoms provoked by ion irradiation and the resulting magnetic glassy state, which can be driven into a phase coexistence of metallic ferromagnetic droplets and the insulating glass matrix in a magnetic field.  相似文献   

10.
The magneto-transport properties are investigated in metamagnetic CoMnSi0.88Ge0.12 alloy.By applying a magnetic field or increasing temperature,a metamagnetic phase transition from antiferromagnetic to ferromagnetic is observed in this alloy.Around the metamagnetic phase transition,CoMnSi0.88Ge0.12 alloy exhibits a large and negative magnetoresistance effect(~32%) under a magnetic field of 20 kOe(1 Oe = 79.5775 A/m),which is ascribed to the spin-dependent scattering of conduction electrons.  相似文献   

11.
The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot. The possible reason for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating. For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film, a cluster model with a series of graphite (0001) basal surfaces has been presented, and the theoretical calculations have been performed to investigate work functions of graphite (0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.  相似文献   

12.
We show that it is possible to localize an atom in a half-wavelength region by relaxing the strict condition that the atom is prepared in a specific excited state as in the recently proposed scheme [Phys. Rev. A 65 (2002) 043819]. In particular, we consider a four-level atom, for which a weak exciting field transfers population from the ground state to the excited state and three control fields (one standing-wave field while two travelling-wave fields) couple the excited state and two auxiliary states. By tuning the exciting field and by varying the collective phase of the control fields, the atom is localized in one of the two half-wavelength regions with 50% detecting probability. The main advantage of the scheme is the experimental accessibility and controllability.  相似文献   

13.
We present the magnetoresistance measurements of ultrathin Mn5Ge3 films with different thicknesses at low temperatures. Owing to the lattice mismatch between MnsGe3 and Ge (111), the thickness of MnsGe3 films has a significant effect on the magnetoresistance. When the thickness of Mn is more than 72 monolayers (MLs), the magnetoresistance of the Mn5 Ge3 films appears a peak at about 6 kOe, which shows that the magnetoresistance results from the Anderson weak localization effect and the variable range hopping in the presence of a magnetic field. The magnetic and semiconducting properties indicate that the Mn5 Ge3 film is a potential material for spin injection.  相似文献   

14.
The in situ valence band photoemission spectrum (PES) and X-ray absorption spectrum (XAS) at V LⅡ-LⅢ edges of the VO2 thin film, which is prepared by pulsed laser deposition, are measured across the metal–insulator transition (MIT) temperature (TMIT=67 ℃). The spectra show evidence for changes in the electronic structure depending on temperature. Across the TMIT, pure V 3d characteristic d‖ and O 2p-V 3d hybridization characteristic πpd, σpd bands vary in binding energy position and density of state distributions. The XAS reveals a temperature-dependent reversible energy shift at the V LⅢ-edge. The PES and XAS results imply a synergetic energy position shift of occupied valence bands and unoccupied conduction band states across the phase transition. A joint inspection of the PES and XAS results shows that the MIT is not a one-step process, instead it is a process in which a semiconductor phase appears as an intermediate state. The final metallic phase from insulating state is reached through insulator–semiconductor, semiconductor–metal processes, and vice versa. The conventional MIT at around the TMIT=67 ℃ is actually a semiconductor–insulator transformation point.  相似文献   

15.
陈大明  李元勋  韩莉坤  龙超  张怀武 《中国物理 B》2016,25(6):68403-068403
Barium ferrite(Ba M) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition(PLD).The effects of deposition substrate temperature on the microstructure,magnetic and microwave properties of Ba M thin films are investigated in detail.It is found that microstructure,magnetic and microwave properties of Ba M thin film are very sensitive to deposition substrate temperature,and excellent Ba M thin film is obtained when deposition temperature is 910℃ and oxygen pressure is 300 m Torr(1 Torr = 1.3332×10~2Pa).X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology,and the crystallographic alignment degree can be calculated to be 0.94.Hysteresis loops reveal that the squareness ratio(M_r/M_s) is as high as 0.93,the saturated magnetization is 4004 Gs(1 Gs = 10~4T),and the anisotropy field is 16.5 kOe(1 Oe = 79.5775 A·m~(-1)).Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe,and the ferromagnetic resonance linewith is108 Oe at 50 GHz,which means that this thin film has low microwave loss.These properties make the Ba M thin films have potential applications in microwave devices.  相似文献   

16.
Taking into account surface transition layers (STLs), we study the phase transformation and pyroelectric properties of ferroelectric thin films by employing the transverse Ising model (TIM) in the framework of the mean field approximation. The distribution functions representing the intra-layer and inter-layer couplings between the two nearest neighbour pseudo-spins are introduced to characterize STLs. Compared with the results obtained by the traditional treatments for the thin films using only the single surface transition layer (SSL), it is shown that the STL model reflects a more realistic and comprehensive situation of films. The effects of various parameters on the phase transformation properties have shown that STL can make the Curie temperature of the film higher or lower than that of the corresponding Sulk material, and the thickness of STL is a key factor influencing the film properties. For a film with definite thickness, there exists a critical STL thickness at which ferroelectricity will disappear when the intra-layer and inter-layer interactions are weak.  相似文献   

17.
A Coo.3s (Alq3)o.62 granular film is prepared using a co-evaporating technique on a silicon substrate with a native oxide layer. A crossover of magnetoresistance (MR) from positive to negative is observed. The positive MR ratio reaches 17.5% at room temperature (H = 50kOe), and the negative MR ratio reaches -1.35% at 1514 (H = 10 kOe). Furthermore, a metal-insulator transition is also observed. The transition of resistance and MR results from the channel switching of electron transport between the upper Co-AIq3 granular film and the inversion layer underneath. The negative MR originates from the tunneling magnetoresistance effect due to the tunneling conducting between adjacent Co granules, and the positive MR may be attributed to the transport of high mobility carriers in the SiO2/Si inversion layer.  相似文献   

18.
Helium-charged nanocrystalline titanium films have been deposited by HeAr magnetron co-sputtering. The effects of substrate temperature on the helium content and microstructure of the nanocrystalline titanium films have been studied. The results indicate that helium atoms with a high concentration are evenly incorporated in the deposited titanium films. When the substrate temperature increases from 60℃ to 350℃ while the other deposition'parameters are fixed, the helium content decreases gradually from 38.6 at.% to 9.2at.%, which proves that nanocrystalline Ti films have a great helium storage capacity. The 20 angle of the Bragg peak of (002) crystal planes of the He-charged Ti film shifts to a lower angle and that of (100) crystal plane is unchanged as compared with that of the pure Ti film, which indicates that the lattice parameter c increases and a keeps at the primitive value. The grain refining and helium damage result in the diffraction peak broadening.  相似文献   

19.
The epitaxial (single crystal-like) Pr0.4La0.1Sr0.5MnO3 (PLSMO) and Nd0.35La0.15Sr0.5MnO3 (NLSMO) thin films are prepared and characterized, and the electric and magnetic properties are examined. We find that both PLSMO and NLSMO have their own optimum deposition temperature (To) in their growing into epitaxial thin films. When the deposition temperature is higher than To, a c-axis oriented but polycrystalline thin film grows; when the deposition temperature is lower than To, the thin film tends to be a-axis oriented and also polycrystalline. The most important point is that for the epitaxial PLSMO and NLSMO thin films the electronic phase transitions are closely consistent with the magnetic phase transitions, i.e. an antiferromagnetic phase corresponds to an insulating state, a ferromagnetic phase corresponds to a metallic state and a paramagnetic phase corresponds to a semiconducting state, while for the polycrystalline thin films the electronic phase transitions are always not consistent with the magnetic transitions.  相似文献   

20.
High-quality indium-tin-oxide (ITO) films are deposited on p-type Czochralski silicon and 7059 Coming glass by direct-current magnetron sputtering at various temperatures. The structural, electrical and optical properties of the ITO films are investigated as functions of the substrate temperature. A comparison between the characteristics of the ITO films on silicon and Coming glass is presented. The results show that for the ITO film on silicon,the nucleation begins from room temperature; the resistivity reaches a maximum value at 75℃; the reflectivity increases with increasing temperature; when temperature is above 125℃, the ITO grows in a three-dimensional manner and forms a granular structure. However, for the ITO film on glass, it is still in an amorphous state at 75℃. Moreover, both the resistivity and the reflectivity decrease with increasing temperature. Above 125℃, the ITO grows in a two-dimensional manner and forms a domain structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号