首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
在2.9%(wt)Ni/Al2O3催化剂上用insituFTIR研究了CH4部分氧化制合成气的反应机理。结果表明,催化剂表面的活性碳物种与化学吸附的O原子反应生成CO;CH4/O2(2:l)混合气在催化剂表面吸附的IR谱图表明只有H2O和CO2存在,说明CH4和CO2的重整反应没有发生。因此,我们认为CO和H2是一级产物。  相似文献   

2.
La2O3助剂对CH4部分氧化制氢Ni-Cu/ZrSiO催化剂的影响   总被引:1,自引:4,他引:1  
用等体积浸渍法制备了ZrO2-SiO2(ZrSiO)表面复合氧化物负载的Ni-Cu双金属催化剂,并用TPR、XPS、IR、TPD及微反技术考察了稀土La2O3助剂对CH4和H2O在Ni-Cu/ZrSiO催化剂表面上的吸附及甲烷部分氧化制氢反应性能的影响。结果表明,加入La2O3助剂使催化剂表面Ni, Cu原子电子云密度增加,CH4和H2O在催化剂表面上的吸附增强;在反应温度450 ℃、进料摩尔比n-CH4∶nO2∶nH2O=1∶0-5∶2-5以及甲烷空速SV(CH4)=1 200 h-1的条件下,催化剂Ni-Cu-La2O3/ZrSiO上CH4转化率大于90%,生成H2的选择性高于99%,副产物CO的选择性仅为1.1%。根据实验结果,讨论了La2O3助催化剂的作用机理。  相似文献   

3.
用等体积浸渍法制备了MoO3 SiO2 (MoSiO)表面复合氧化物负载的Cu Ni K2 O催化剂。利用IR ,TPR ,TPD以及微反技术研究了K2 O助剂对CO2 和CH3OH在Cu Ni MoSiO催化剂表面上吸附和合成DMC(碳酸二甲酯 )反应性能的影响。结果表明 :K2 O助剂的加入 ,使CO2 在催化剂表面吸附强度增加 ,当K2 O含量达Cu Ni总量的 15 %时 ,CO2 在催化剂表面上吸附后生成K2 CO3;CH3OH在催化剂表面上的解离吸附态 (CH3O- H )的吸附强度减弱 ;CO2 和CH3OH在Cu Ni K2 O MoSiO催化剂表面反应主要产物为DMC ,H2 O ,CO和CH2 O。随着K2 O助剂的加入 ,反应转化率在 10 %之前增加 ,之后下降 ,DMC选择性稍有提高。副产物 (CO和CH2 O)的选择性下降。根据实验结果探讨了K2 O对催化剂表面活性中心的电荷分布的影响。  相似文献   

4.
徐柏庆  陈兰忠 《分子催化》1992,6(6):454-461
用TPD和IR谱研究了CH_3NO_2在ZrO_2催化剂上的吸附活化和分解反应。结果表明,室温下CH_3NO_2在ZrO_2表面发生不可逆化学吸附,它们在TPD过程中可完全分解生成HCN、CO_2、CO、NH_3、H_2O和微量NO。其中H_2O和NO的脱附峰出现在383K附近。其它产物在543K附近出现极大值。IR结果表明,CH_3NO_2在ZrO_2上吸附形成诸如[CH_2NO_2],和/或吸附物种。这些吸附物种在升高温度时转化为表面态“HCN”。“HCN”或脱附,或进一步向表面“HCONH_2”和/或“HCOO~-”转化,后两种表面物种分解可产生CO_2、NH_3和CO。将这些结果与CH_3NO_2在SiO_2-Al_O_3和MgO催化剂上的结果进行了比较,讨论了酸-碱双功能性ZrO_2催化剂上CH_3NO_2活化分解的特点。  相似文献   

5.
用TPD和IR方法研究了CH_3NO_2在典型固体酸SiO_2-Al_2O_3和固体碱MgO催化剂上的吸附分解。结果表明,在SiO_2-Al_2O_3表面CH_3NO_2吸附转化为表面甲酰胺物种,后者在高温下分解为CO_2和NH_3。在MgO表面CH_3NO_2吸附形成多种表面化学物种,它们在升温过程中脱附,并通过表面亚硝基甲烷物种分解为NO、C_2H_4、C_2H_6和N_2O.讨论了CH_3NO_2分解过程中表面酸、碱中心的作用。  相似文献   

6.
王爱菊  钟顺和 《催化学报》2004,25(2):101-106
 用等体积浸渍法制备了MgO-SiO2(MgSiO)复合氧化物负载的Ni-Cu双金属催化剂,采用程序升温还原(TPR),X光电子能谱(XPS),红外光谱(IR),程序升温脱附(TPD)及微反技术考察了稀土La2O3的加入对CH4和H2O在Ni-Cu/MgSiO催化剂表面上的吸附及甲烷部分氧化制氢反应性能的影响. 结果表明,加入La2O3使催化剂表面Ni和Cu原子的电子云密度增加,CH4和H2O在催化剂表面上的吸附增强. CH4与O2和H2O在Ni-Cu/MgSiO催化剂上反应的主要产物为H2和CO2. La2O3的加入有利于提高CH4转化率及H2的选择性,并可提高催化剂稳定性及抗积炭能力. 讨论了La2O3的助催化作用机理.  相似文献   

7.
CH4部分氧化制氢Ni-Cu/ZrSiO催化剂的研究   总被引:6,自引:1,他引:6  
采用表面反应改性法制备了ZrO2-SiO2(ZrSiO)表面复合物,用等体积浸渍法制备了ZrSiO负载的Ni-Cu双金属催化剂,并用IR、TPD、TPSR和微反技术考察了CH4、H2O和O2在催化剂表面上的化学吸附及反应性能。结果表明,在Ni-Cu /ZrSiO催化剂上存在着Ni-Cu金属位,Lewis酸位Znn+和碱位Zr-O-三类活性中心;CH4和H2O在金属位和Lewis酸位Znn+和碱位Zr-O-的协同作用下可形成解离吸附态; CH4、H2O和O2在Ni-Cu /ZrSiO催化剂表面上的主要反应产物为H2和CO2,选择性均在95%以上。  相似文献   

8.
K_2O对合成DMC用Cu- Ni/V_2O_5- SiO_2催化剂性能的影响   总被引:1,自引:0,他引:1  
K_2O是多种固体催化剂的有效助剂 .大多数金属表面对 CO_2的吸附非常弱,在过渡金属中加入碱金属助剂可以促进 CO_2的吸附活化 [1, 2].近期对这方面的研究主要集中在 Pt[3]、 Cu[4]、 Ru[5]和 Fe[6]等单晶金属面上 .我们已报导过 Cu- Ni/V2O5- SiO_2(VSiO)催化剂表面 CO_2和 CH_3OH吸附及其反应性能 [7, 8].本研究将 K_2O助剂引入到 Cu- Ni/VSiO催化剂中,进一步考察了 K_2O助剂对 CO_2和 CH_3OH吸附和反应性能的影响 .1实验部分   采用 Cu、 Ni氨络合物混合硝酸盐水溶液 (含 KNO3, K占 Cu、 Ni总原子数 5~ 15…  相似文献   

9.
K2O对合成DMC用Cu-Ni/V2O5-SiO2催化剂性能的影响   总被引:3,自引:0,他引:3  
V2O5 SiO2(VSiO) supported Cu Ni K2O catalysts for the synthesis of dimethyl carbonate were prepared using isovolumic impregnation. Based on TPR,TPD, IR and micro reactor techniques, the effect of K2O on the adsorption and reaction of CO2 and CH3OH on the catalyst were characterized. The results show that addition of K2O exerts obvious influence on the charge distribution of the active sites on Cu Ni/VSiO catalyst,increases the intensities of CO2 horizontal adsorption state, while that of the dissociation state of methanol descends. When the ratio of K is above 15 %, K2CO3 is formed on the catalyst. Moreover,the main reaction products of CO2 and CH3OH on Cu Ni K2O/VSiO catalyst are still DMC, H2O, CO and CH2O,and with the addition of K2O, the conversion of reactants rise, but the selectivity of by-products decreases.  相似文献   

10.
 用等体积浸渍法制备了ZrO2-SiO2(ZrSiO)表面复合氧化物负载的Cu-Ni催化剂,并用IR,TPR,TPD及微反技术考察了K2O助剂对CO2和CH3OH在Cu-Ni/ZrSiO催化剂表面上的吸附及合成碳酸二甲酯(DMC)反应性能的影响.结果表明:加入K2O助剂使CO2在催化剂表面上的吸附增强,当n(K)/n(Cu+Ni)=15%时,CO2在催化剂表面上吸附后生成K2CO3;CH3OH在催化剂表面上的解离吸附态(CH3O-和H+)的吸附减弱;CO2和CH3OH在Cu-Ni/ZrSiO催化剂表面上反应的主要产物为DMC,H2O,CO和CH2O;随着K2O助剂的加入,反应转化率及DMC选择性提高,副产物(CO和CH2O)的选择性下降.根据实验结果,探讨了K2O对催化剂表面活性中心电荷分布的影响.  相似文献   

11.
Ni(OCH3)2/SiO2催化剂的制备及其合成碳酸二甲酯的反应性能   总被引:4,自引:0,他引:4  
采用表面改性和离子交换相结合的方法,制备了负载型单核金属甲氧基配合物Ni(OCH3)2/SiO2催化剂。利用IR、TPD、TPSR和微反技术,考察了催化剂的表面结构以及CO2、CH3OH在催化剂表面上的化学吸附和反应性能。结果表明,负载型单核金属甲氧基配合物Ni(OCH3)2/SiO2中,Ni^2 与载体SiO2表面的O^2-以双齿形式配位;在催化剂表面存在CO2的桥式吸附态和甲氧碳酸酯基物种两种吸附态,CH3OH则只有一种分子吸附态。在373-473K条件下,CO2和CH3OH在催化剂上的反应物主要是DMC、H2O以及少量的CO、CH4和CH2O,催化剂的活性由表面甲氧碳酸酯基物种与分子吸附态甲醇的反应决定的。讨论了催化剂上CO2和CH3OH的活化过程及吸附态的形成机理。  相似文献   

12.
担载型钌催化剂吸附CO性能的原位红外研究   总被引:1,自引:0,他引:1  
用原位红外研究了CO的吸附与脱附,CO/H2的共吸附及反应,考察了焙烧温度对Ru/Al2O3及Ru/SiO2催化剂的影响,结果表明,经不同温度焙烧的催化剂样品,其吸附性能有很大差别。随着焙烧温度的升高,金属-载体相互作用增强,导致CO吸附量减少。Ru/Al2O3吸附的CO较稳定,而Ru/SiO2吸附的CO在高温易脱附。各不同CO吸会态间、多重态更易发生反应。在未焙烧的Ru/SiO2低CO/H2反应  相似文献   

13.
担载于Al_2O_3上的NaRuCO_3(CO)_(12)络合物在IR光谱上出现类似于Ru(CO)_2O_2络合物特征带的羰基带,在300~400℃左右变强,在CO中尤为明显。在以ZrO_2为载体时出现与原来络合物相近的弱羰基带。当CO吸附于以Al_2O_3为载体的脱羰基催化剂上时,发现在氧化态催化剂上也出现了与担载络合物相似的吸收带,在还原态催化剂上只出现线式带。吸附于以ZrO_2为载体的脱羰基催化剂上的CO不出现CO的IR吸收带,在He中亦无TPD脱附物,在H_2中却可发生加氢反应生成CH_4。从Na~+和ZrO_2协同效应角度,探讨了CO在上述两种分散型催化剂上吸脱附行为不同的原因。  相似文献   

14.
The pyrolyses of the guaiacols or methoxyphenols (o-, m-, and p-HOC(6)H(4)OCH(3)) have been studied using a heated SiC microtubular (μ-tubular) reactor. The decomposition products are detected by both photoionization time-of-flight mass spectroscopy (PIMS) and matrix isolation infrared spectroscopy (IR). Gas exiting the heated SiC μ-tubular reactor is subject to a free expansion after a residence time of approximately 50-100 μs. The PIMS reveals that, for all three guaiacols, the initial decomposition step is loss of methyl radical: HOC(6)H(4)OCH(3) → HOC(6)H(4)O + CH(3). Decarbonylation of the HOC(6)H(4)O radical produces the hydroxycyclopentadienyl radical, C(5)H(4)OH. As the temperature of the μ-tubular reactor is raised to 1275 K, the C(5)H(4)OH radical loses a H atom to produce cyclopentadienone, C(5)H(4)═O. Loss of CO from cyclopentadienone leads to the final products, acetylene and vinylacetylene: C(5)H(4)═O → [CO + 2 HC≡CH] or [CO + HC≡C-CH═CH(2)]. The formation of C(5)H(4)═O, HCCH, and CH(2)CHCCH is confirmed with IR spectroscopy. In separate studies of the (1 + 1) resonance-enhanced multiphoton ionization (REMPI) spectra, we observe the presence of C(6)H(5)OH in the molecular beam: C(6)H(5)OH + λ(275.1?nm) → [C(6)H(5)OH ?] + λ(275.1nm) → C(6)H(5)OH(+). From the REMPI and PIMS signals and previous work on methoxybenzene, we suggest that phenol results from a radical/radical reaction: CH(3) + C(5)H(4)OH → [CH(3)-C(5)H(4)OH]* → C(6)H(5)OH + 2H.  相似文献   

15.
The microcalorimetric technique is employed to study the interaction of NO and NO 2 with the In/HZSM 5 catalyst which has been reported to be active for the selective catalytic reduction (SCR) of NO by CH 4. The amounts of chemisorption and differential heat of NO 2 adsorption on In 2O 3, HZSM 5 and In/HZSM 5 are much larger than those of NO. Furthermore, NO 2 adsorption on In 2O 3 is irreversible. Associating with the results of in situ IR and TPD, and the NO x conversion in NO(NO 2)+CH 4 system over In/HZSM 5 and HZSM 5 catalysts, it is reasonable to propose that in the CH 4 SCR process NO 2 plays a key role, and NO 2 species chemisorbed on the HZSM 5 support can migrate to the In sites to react with CH 4.  相似文献   

16.
We have used a heated 2 cm × 1 mm SiC microtubular (μtubular) reactor to decompose acetaldehyde: CH(3)CHO + Δ → products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 μs in the μtubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH(3)CHO, we have studied three isotopologues, CH(3)CDO, CD(3)CHO, and CD(3)CDO. We have identified the thermal decomposition products CH(3) (PIMS), CO (IR, PIMS), H (PIMS), H(2) (PIMS), CH(2)CO (IR, PIMS), CH(2)=CHOH (IR, PIMS), H(2)O (IR, PIMS), and HC≡CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH(3)CHO; namely, radical decomposition: CH(3)CHO + Δ → CH(3) + [HCO] → CH(3) + H + CO; elimination: CH(3)CHO + Δ → H(2) + CH(2)=C=O; isomerization∕elimination: CH(3)CHO + Δ → [CH(2)=CH-OH] → HC≡CH + H(2)O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH(2)=C:, as an intermediate in the decomposition of vinyl alcohol: CH(2)=CH-OH + Δ → [CH(2)=C:] + H(2)O → HC≡CH + H(2)O.  相似文献   

17.
YBa2Cu3Ox(x=6-7)薄膜被合成在YSZ基底上,用FTIR,XPS,XRD等手段原位研究CO在薄膜上的吸附及加氢行为。CO吸附在Cu位置上,与YBCO体相中的O作用,生成表面CO2或-COO基团,导致YBCO中生产氧空位,使YBCO发生昌型转变,Cu^2+被还原为Cu^+或Cu^0.YBCO中的氧空位有利于CO、CO2及H2的吸附。CO、CO2在YBCO膜上的加氢产物为CH3OH、CH3  相似文献   

18.
ZrO2—SiO2负载Cu—Ni催化剂的CO2加氢反应性能   总被引:7,自引:0,他引:7  
采用表面反应改性法,制备了ZrO2-SiO2(ZrSiO)表面复合物载体,用等体积浸渍法制备了ZrSiO担载的Cu-Ni双金属催化剂,借助BET、TPR、IR和微反等技术,研究了ZrSiO及其负载的Ni、Cu双金属催化剂的表面构造,化学吸附及催化CO2加氢的反应性能,结果表明,ZrSiO表面主要是价联型结构,ZrO2引入SiO2表面,可以有效地促进CuO和NiO的还原,在ZrSiO负载的Cu-Ni催化剂表面的Cu或Ni位,CO2发生化学 吸附形成线、剪式、卧式吸附态,在该催化剂上CO2的加氢反应产物主要是CH3OH3、CH4、CO和H2O生成CH3OH的选择性与催化剂组成及反应条件密切相关,在适当的条件,CH3OH的选择性大于90%。  相似文献   

19.
采用表面改性和离子交换相结合的方法制备了Ni2(OCH3)2/SiO2负载型双核金属甲氧基配合物催化剂,利用红外光谱(IR)、程序升温脱附(TPD)、程序升温表面反应(TPSR)和微反技术考察了催化剂的表面结构以及CO2和CH3OH的化学吸附和反应性能.结果表明:Ni2(OCH3)2/SiO2中Ni2+与载体SiO2表面O2-以双齿配位形式键合,甲氧基以桥基形式联结双金属离子形成双核物种Ni2(OCH3)2;CO2在催化剂表面存在甲氧碳酸酯基物种和桥式两种吸附态,CH3OH则只有一种分子吸附态;在100~200℃条件下,CO2和CH3OH在催化剂上的反应产物主要是DMC和H2O;根据反应结果,讨论了催化反应机理.  相似文献   

20.
Complexes [(BPMEN)Fe(II)(CH(3)CN)(2)](ClO(4))(2) (1, BPMEN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane) and [(TPA)Fe(II)(CH(3)CN)(2)](ClO(4))(2) (2, TPA = tris(2-pyridylmethyl)amine) are among the best nonheme iron-based catalysts for bioinspired oxidation of hydrocarbons. Using EPR and (1)H and (2)H NMR spectroscopy, the iron-oxygen intermediates formed in the catalyst systems 1,2/H(2)O(2); 1,2/H(2)O(2)/CH(3)COOH; 1,2/CH(3)CO(3)H; 1,2/m-CPBA; 1,2/PhIO; 1,2/(t)BuOOH; and 1,2/(t)BuOOH/CH(3)COOH have been studied (m-CPBA is m-chloroperbenzoic acid). The following intermediates have been observed: [(L)Fe(III)(OOR)(S)](2+), [(L)Fe(IV)═O(S)](2+) (L = BPMEN or TPA, R = H or (t)Bu, S = CH(3)CN or H(2)O), and the iron-oxygen species 1c (L = BPMEN) and 2c (L = TPA). It has been shown that 1c and 2c directly react with cyclohexene to yield cyclohexene oxide, whereas [(L)Fe(IV)═O(S)](2+) react with cyclohexene to yield mainly products of allylic oxidation. [(L)Fe(III)(OOR)(S)](2+) are inert in this reaction. The analysis of EPR and reactivity data shows that only those catalyst systems which display EPR spectra of 1c and 2c are able to selectively epoxidize cyclohexene, thus bearing strong evidence in favor of the key role of 1c and 2c in selective epoxidation. 1c and 2c were tentatively assigned to the oxoiron(V) intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号