首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
彭璇 《物理化学学报》2015,30(11):2000-2008
采用巨正则系综蒙特卡罗(GCMC)方法研究了空气中微量苯组分在单臂碳纳米管(SWNTs)上的吸附净化. 模拟表明, 具有较大孔径的(20,20)纳米管比较适合吸附纯苯蒸汽, 而对于移除空气中的毒性苯物质, 苯的吸附选择性分别在(12,12)纳米管及4.0 MPa时和(18,18)纳米管及0.1 MPa时出现最小值和最大值. 为了解释这一异常行为, 我们进一步分析了N2-O2-C6H6混合物的局部密度分布、吸附分子构型和概率密度分布, 发现(18,18)纳米管内外完全被苯分子占据, 而对于(12,12)纳米管, 由于存在更强的吸附质-吸附剂相互作用, 空气分子更倾向于吸附在管与管之间的间隙. 此外, 吸附分子的空间有序参数表明大多数苯分子采取“平躺”在纳米管表面的定位, 而线性的N2和O2分子则多数平行于孔轴方向. 最后研究了温度和苯分子主体相浓度对分离效果的影响. 我们发现较大孔中的选择性随着温度的增加比小孔下降更加明显. 与此对比, 主体相苯浓度对小孔中的选择性起到更加重要的作用.  相似文献   

2.
采用分子模拟与吸附理论研究了天然气成分在有序介孔碳材料CMK-3上的吸附和分离.巨正则系综蒙特卡罗(GCMC)模拟表明,CH4和CO2气体的较优存储条件分别为208 K、4 MPa和298 K、6 MPa,其最大超额吸附量分别为10.07和14.85 mmol· g-1.基于双位Langmuir-Freundlich (DSLF)模型,使用理想吸附溶液理论(IAST)预测了不同二元混合物在CMK-3中的分离行为,发现吸附选择性Sco2/CH4与ScH4/N2比较接近,在298 K和4 MPa下约等于3,而N2-CO2体系中的CO2吸附选择性较高,可达到7.5,说明CMK-3是一种适合吸附和分离天然气组分的碳材料.  相似文献   

3.
以多巴胺(DA)为模板, 多孔阳极氧化铝膜(AAO)为反应载体, 合成了多巴胺分子印迹聚合物纳米管膜(AAO@MIP). 利用扫描电子显微镜对分子印迹纳米管膜的形貌进行了表征, 并用高效液相色谱(HPLC)研究了其对儿茶酚胺类(CLs)药物的吸附性能. 实验结果表明, 在最优萃取条件下, AAO@MIP 纳米管膜对多巴胺、 肾上腺素和去甲肾上腺素具有较高的选择性, 3种儿茶酚胺类药物在0.50~300 μmol/L浓度范围内呈良好的线性关系(r2>0.9970); 检出限(S/N=3)分别为15.5, 12.6和22.5 ng/L. AAO@MIP纳米管膜对多巴胺的最大吸附容量可达82.1 μmol/g; 6次吸附-解吸附重复利用后, 吸附容量仅降低3.3%.AAO@MIP 纳米管膜应用于萃取人体尿液中3种儿茶酚胺, 样品加标回收率为74.0%~100.4%, 相对标准偏差(RSD)为3.6%~6.8%. 该方法简便、 快速、 选择性高, 适用于检测人体尿液中的儿茶酚胺类药物的含量.  相似文献   

4.
采用巨正则Monte Carlo(GCMC)方法讨论了不同温度、压力及管径下,碳纳米管对H2S/N2混合物(主体相体积比为1∶99)的吸附分离选择性.结果表明,随着碳纳米管管径的增大,H2S的吸附选择性先增加后减小;而(11,0)碳纳米管(管径为0.86 nm)对H2S的选择性最高,这种选择性与管径的关系是由几何效应和能量效应共同决定的.针对(11,0)碳纳米管讨论了温度和压力对H2S吸附量和选择性的影响.模拟结果表明,随着温度上升,H2S的吸附量和选择性都呈先增加后减小的趋势;随着压力增加,H2S的吸附量和选择性都有所下降.本文模拟结果可为含硫气体混合物的吸附分离提供一定参考.  相似文献   

5.
在实验室合成了具有较大比表面积和纳米管特性的纳米管钛酸H2Ti2O4(OH)2,对其热处理前后的形貌和结构进行了表征,将其作为气—固色谱吸附剂制备出一种新型纳米管钛酸石英PLOT柱,同时考察了这种纳米管结构的钛酸作为固定相对C1—C4气体烷烃混合物、空气和SF6以及CO和CO2的分离性能。结果表明:新型纳米管钛酸石英PLOT柱具有特殊的吸附分离性能,纳米管钛酸作为气—固吸附色谱石英毛细管柱的固定相,对C1-C4烷烃具有较强的吸附性、较好的峰对称性和较高的分离度,而且能够分离CO和CO2以及空气和SF6等永久性气体组分。在150℃、-0.1MPa真空下对纳米管钛酸处理后,其形貌、结构和表面性质均发生变化,将对C1-C4烷烃分离的保留时间(tR′)和色谱峰对称性(Tf)产生影响,在300℃,N2气氛下处理后,纳米管特性完全消失,其不适宜再作分析C1-C4烷烃的固定相。  相似文献   

6.
空气中微量1,1,1,2-四氟乙烷吸附分离的分子模拟   总被引:1,自引:0,他引:1  
利用实验和巨正则系综蒙特卡罗(GCMC)方法研究了N2/HFC-134a(1,1,1,2-四氟乙烷)二元混合物在活性碳纤维(ACF)内的吸附分离.重点讨论了孔径、压强及温度对HFC-134a吸附选择性的影响,为不同条件下吸附空气中的微量HFC-134a提供了理论参考.结果表明:较小孔径、低压以及低温条件有利于HFC-134a的吸附分离.在常温下,HFC-134a在带有孔径分布的活性碳纤维材料内的吸附选择性可以达到62,表明我们所制备的活性碳纤维材料可以较好地分离空气中微量的HFC-134a.特别地,在常温和0.41×105Pa下,0.75nm的碳孔对HFC-134a的吸附选择性达到了230.因此,为了有效地吸附空气中的HFC-134a,推荐使用小孔径的碳材料.  相似文献   

7.
采用基于密度泛函理论的PBEPBE方法对铂(Pt)掺杂的氮化硼(BN)纳米管进行了理论研究. 计算结果表明, Pt原子突出BN纳米管表面, Pt的d轨道暴露到外面, 使它更容易和外来分子发生相互作用, 提高了纳米管的反应活性. Pt取代掺杂缩小了纳米管的能隙, 从而提高BN纳米管的导电性. 一氧化碳(CO)在Pt掺杂BN纳米管上的吸附行为表明, 2个CO能化学吸附到纳米管表面, 更多的CO分子吸附是物理吸附.  相似文献   

8.
邵晓红  黄世萍  汪文川 《化学学报》2003,61(11):1740-1746
以N_2作为空气的主要成分,利用Kierlik和Rosinberg提出的密度函数理论 (density functional theory, KR-DFT)研究了N_2/CCl_4双元混合物在活性炭内的 吸附。重点讨论了孔径、压力和温度对CCl_4吸附选择性的影响,不为同条件下吸 附回收空气中的CCl_4提供了理论参考。在KR-DFT计算中。N_2分子和CCl_4分子模 型化为单点的Lennard-Jones球;流体分子与吸附剂材料之间的作用采用平均场理 论中的10-4-3模型。在KR-DFT方法中,自由能采用标度的场粒子理论(scaled field particle theory, SPT)处理。讨论了孔径、压力和温度对吸附选择性的影 响。研究结果表明,常温下当空气中CCl_4的含量为1%时,1.39nm的孔径最有利于 CCl_4的吸附。  相似文献   

9.
自组装一种新型的热解吸/化学发光的仪器系统,据此建立了一种测定空气中痕量苯的新方法,并对比研究了不同吸附剂对苯的吸附性能.实验表明,Tenax-TA(2,6-二苯基对苯醚的多孔聚合物)对空气中低浓度的苯具有较好吸附效果.当从吸附剂解吸的苯蒸汽通过氧化钇(Y2O3)粉体表面时,其催化发光强度与苯浓度在相当宽的范围内呈良好的线性关系,其线性范围为0.44~44 mg/m3(r=0.9991,n=9),检出限为0.1 mg/m3(S/N=3); 对浓度为0.44 mg/m3的苯气体平行测定了9次,其相对标准偏差为4.45%;Tenax-GR(2,6-二苯并呋喃聚合物树脂加上30%石墨碳)对低浓度苯的吸附效果更好,其线性范围为0.22~22 mg/m3(r=0.9922,n=9); 检出限为0.07 mg/m3(S/N=3).本方法耗时短、简便快速,成功实现了对苯的实时在线检测.  相似文献   

10.
多孔模板法制备聚乙撑二氧噻吩纳米管光电性能的研究   总被引:2,自引:0,他引:2  
采用单体聚合-溶液浸润-聚合物成管同时进行的方法,在氧化铝多孔模板(AAO)中制备了聚乙撑二氧噻吩(PEDOT)纳米管.通过形貌分析推断PEDOT纳米管在孔道中的生长包括两个过程:首先是聚合物溶液浸润整个孔道;然后是聚合过程中生成的阳离子自由基和掺杂态的PEDOT由于带正电荷而在孔道壁产生"钉扎"效应.XRD分析显示,在孔道内生成的PEDOT分子链具有一定的取向性.进一步研究表明,聚合物的吸附及单体聚合后的吸附,在模板壁导致不同的分子链排列,使PEDOT纳米管分子排列有序性受到影响.采用四探针和扫描隧道显微镜(STM)方法研究了纳米管光电性能.  相似文献   

11.
A silica membrane was produced by chemical vapor deposition using tetraethoxysilane (TEOS), phenyltriethoxysilane (PTES) or diphenyldiethoxysilane (DPDES) as the Si source. Amorphous silica was deposited in the mesopores of a γ-alumina film coated on a porous -alumina tube, by evacuating the reactant through the porous wall. Hydrogen permeance at a permeation temperature of 600°C was of the order of 10−7 mol m−2 s−1 Pa−1, and was not greatly dependent on the Si sources. The silica membrane produced using TEOS contained micropores permeable to both helium and hydrogen, but CO2 and larger molecules were only slightly permeated through those mesopores which were left unplugged. The silica membrane produced from DPDES showed a single-component CO2 permeance equivalent to that of single-component He, and CO2/N2 selectivity was approximately 9 at a permeation temperature of 30°C. When a mixture of CO2 and N2 was fed, however, CO2 permeance decreased to the level of N2 permeance. The H2/N2 selectivity, determined from single-component permeances to H2 and N2, was approximately 100, and these permeances remained unchanged when an equimolar mixture of H2 and N2 was fed. Thus, the DPDES-derived membrane possessed two types of micropores, abundant pores through which helium and hydrogen permeated and a small number of pores in which molecules of CO2 and N2 were permeable but not able to pass one another. Neither meso or macropores remained in the DPDES membrane.  相似文献   

12.
The polyethersulfone (PES)-zeolite 3A, 4A and 5A mixed matrix membranes (MMMs) were fabricated with a modified solution-casting procedure at high temperatures close to the glass transition temperatures (Tg) of polymer materials. The effects of membrane preparation methodology, zeolite loading and pore size of zeolite on the gas separation performance of these mixed matrix membranes were studied. SEM results show the interface between polymer and zeolite in MMMs experiencing natural cooling is better (i.e., less defective) than that in MMMs experiencing immediate quenching. The increment of glass transition temperature (Tg) of MMMs with zeolite loading confirms the polymer chain rigidification induced by zeolite. The experimental results indicate that a higher zeolite loading results in a decrease in gas permeability and an increase in gas pair selectivity. The unmodified Maxwell model fails to correctly predict the permeability decrease induced by polymer chain rigidification near the zeolite surface and the partial pore blockage of zeolites by the polymer chains. A new modified Maxwell model is therefore proposed. It takes the combined effects of chain rigidification and partial pore blockage of zeolites into calculation. The new model shows much consistent permeability and selectivity predication with experimental data. Surprisingly, an increase in zeolite pore size from 3 to 5 Å generally not only increase gas permeability, but also gas pair selectivity. The O2/N2 selectivity of PES-zeolite 3A and PES-zeolite 4A membranes is very similar, while the O2/N2 selectivity of PES-zeolite 5A membranes is much higher. This implies the blockage may narrow a part of zeolite 5A pores to approximately 4 Å, which can discriminate the gas pair of O2 and N2, and narrow a part of zeolites 3A and 4A pores to smaller sizes. It is concluded that the partial pore blockage of zeolites by the polymer chains has equivalent or more influence on the separation properties of mixed matrix membranes compared with that of the polymer chain rigidification.  相似文献   

13.
微孔椰壳焦孔结构表征   总被引:1,自引:0,他引:1  
为了更深入地了解微孔生物质焦的孔隙结构特征,在水蒸气气氛下制备椰壳焦(CSCs),并且采用了不同分子探针、计算模型和校准步骤对其进行表征。结果表明,椰壳焦有较高的碳含量和比较丰富的孔隙度,适合进一步活化以制备活性炭。表征椰壳焦较为合适的方法是:以Ar为分子探针,并采用非定域密度泛函(NLDFT)模型。当校准步骤优先进行时,以N2和Ar为分子探针的吸附测试结果如孔径分布(PSD)和吸附等温线会受到孔隙阻塞的影响,从而错误地描述椰壳焦的孔隙结构。实验结果还表明,273 K下仪器的真空处理可以去除绝大部分残留的He,降低孔隙阻塞的影响。  相似文献   

14.
采用SXRD,HRTEM,FTIR,SEM和氮气吸附等测试手段对膜结构、形貌、孔径及其分布进行了表征.SXRD和HRTEM结果显示,所制备的膜具有短程有序结构.SEM分析发现膜表面完整.气体渗透实验表明,担载膜具有一定的气体选择性,在0.1MPa下对H2/N2和CH4/N2的分离因子分别为2.25和1.56,气体透过膜孔的扩散由努森机制所控制.等温氮气吸附实验显示,经500℃热处理后氧化硅膜的最可几孔径小于3.34nm,非担载膜的比表面积为919.8m2/g,孔容为0.43mL/g.  相似文献   

15.
以HF改性的Pt/ZSM-5为催化剂,研究了其在苯和甲醇烷基化反应的应用,并用XRD、NH3-TPD、BET等表征方法研究了改性前后催化剂酸性和孔结构变化。 结果表明,经HF改性后,Pt/ZSM-5催化剂的酸性增强、酸量增加,苯和甲醇烷基化反应性能明显提升。 3%HF-0.2%Pt/ZSM-5催化剂催化苯和甲醇烷基化反应时,甲苯和二甲苯选择性达到92.20%。 但是,HF负载量大于6%时,HF脱除的部分骨架硅和骨架铝会堆积在催化剂孔道内部,限制了反应物和产物的扩散,造成其催化性能下降。 通过计算得到了HF改性的Pt/ZSM-5催化剂上苯和甲醇烷基化反应的活化能为118 kJ/mol。  相似文献   

16.
用沉淀法制备了单金属纳米Ru(0)催化剂,考察了ZnSO4和La2O3作共修饰剂对该催化剂催化苯选择加氢制环己烯性能的影响,并用X射线衍射(XRD)、X射线荧光(XRF)光谱、X射线光电子能谱(XPS)、俄歇电子能谱(AES)、透射电镜(TEM)和N2物理吸附等手段对加氢前后催化剂进行了表征.结果表明,在ZnSO4存在下,随着添加碱性La2O3量的增加,ZnSO4水解生成的(Zn(OH)2)3(ZnSO4)(H2O)x(x=1,3)盐量增加,催化剂活性单调降低,环己烯选择性单调升高.当La2O3/Ru物质的量比为0.075时,Ru催化剂上苯转化率为77.6%,环己烯选择性和收率分别为75.2%和58.4%.且该催化体系具有良好的重复使用性能.传质计算结果表明,苯、环己烯和氢气的液-固扩散限制和孔内扩散限制都可忽略.因此,高环己烯选择性和收率的获得不能简单归结为物理效应,而与催化剂的结构和催化体系密切相关.根据实验结果,我们推测在化学吸附有(Zn(OH)2)3(ZnSO4)(H2O)x(x=1,3)盐的Ru(0)催化剂有两种活化苯的活性位:Ru0和Zn2+.因为Zn2+将部分电子转移给了Ru,Zn2+活化苯的能力比Ru0弱.同时由于Ru和Zn2+的原子半径接近,Zn2+可以覆盖一部分Ru0活性位,导致解离H2的Ru0活性位减少.这导致了Zn2+上活化的苯只能加氢生成环己烯和Ru(0)催化剂活性的降低.本文利用双活性位模型来解释Ru基催化剂上的苯加氢反应,并用Hückel分子轨道理论说明了该模型的合理性.  相似文献   

17.
Two-dimensional graphene nanopores have proved to be a very effective molecular sieve with ultra-high molecular permeance due to the atomic thickness of graphene sheets. The mechanism of graphene nanopores for molecular sieving is generally the size-sieving effect of different molecules. However, high-selective molecular separation is difficult to realize based only on the size-sieving effect. Therefore, graphene nanopore-based membranes usually present high permeance but a moderate selectivity, such that the separation performance cannot far exceed those of traditional separation membranes. In this study, the effects of charges on graphene surfaces on the selective permeation of CO2/N2 mixtures through a graphene nanopore is studied using molecular dynamics simulations; its purpose to realize electrostatic effect-based selective molecular permeation through graphene nanopores and find a promising method to improve the selectivity of molecular separation. The simulation results show that graphene nanopores with negative charges have higher CO2 permeance and lower N2 permeance and, thus, present a high selectivity for the separation of the CO2/N2 mixtures. The graphene nanopore with positive charges, however, does not improve the selectivity. The electrostatic effect-based selectivity of graphene nanopores is related to the different molecular adsorption abilities on the graphene surface with charges. For negative charges, the adsorption ability of CO2 molecules increases and the number of permeated molecules via surface mechanism increases and the experience time during the permeation process also increases; ultimately the CO2 permeance increases with increasing the charge density. For the molecules permeated through the surface mechanism, they are firstly adsorbed onto the graphene surface and then diffuse to the pore region for the ultimate permeation; thus, their experience time is longer than that of the molecules permeated through a direct mechanism. Therefore, a longer experience time means a more significant contribution of the surface flux to the total flux. At high surface charge densities, the contribution of surface flux is dominated and thus the experience time is longer. For CO2 molecules, the permeation rates increase with increasing the surface charge density. Namely, a higher experience time corresponds to a higher permeation rate for CO2 molecules. A decrease of N2 permeance with increasing the charge density is correlated to the increasing CO2 permeance via the inhibition effects of non-permeating components on the permeation of permeating components. For positive charges, the adsorption abilities of CO2 and N2 molecules have no obvious variation with the charge density and their permeance is constant; therefore, the graphene nanopore still has no electrostatic effect-based selectivity.  相似文献   

18.
以ZrO(NO32·2H2O和Fe(NO33·9H2O为原料,采用微波水热法制备了不同Fe2O3/ZrO2物质的量比的Fe-Zr催化剂,并经K改性,研究了其催化CO加氢一步法合成低碳烯烃性能。采用XRD、SEM、TEM和N2吸附-脱附等手段对其物相、形貌和比表面积等进行了表征。结果表明,与共沉淀法相比,微波水热制备的Fe-Zr催化剂颗粒粒径均一,具有相对较小的比表面积和较大的孔径;在CO加氢反应中,Zr助剂的添加显著改善了产物分布,Fe、Zr间适宜的相互作用和相对较大的孔径,有利于抑制CH4的生成,提高烯烃选择性。随着Fe2O3/ZrO2物质的量比的降低,Fe、Zr间相互作用逐渐增强,烯烃选择性和收率先增加后降低。当Fe2O3/ZrO2物质的量比为75:25时,在340 ℃、1.5 MPa、1 000 h-1和H2/CO物质的量比为2的条件下,烯烷比(O/P)达4.86,总烯烃收率达62.57 g/m3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号