首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis, characterization, and gas permeability of 10 new polyphosphazenes has been studied. Additionally, the first gas permeation data has been collected on hydrolytically unstable poly[bis-(chloro)phosphazene]. Gases used in this study include CO2, CH4, O2, N2, H2, and Ar. CO2 was the most permeable gas through any of the phosphazenes and a direct correlation between the Tg of the polymer and CO2 transport was noted with permeability increasing with decreasing polymer Tg. To a lesser degree, permeability of all the other gases studied also yielded increases with decreasing polymer Tg. The trend observed for these new polymers was further supported by published data for other phosphazenes. Furthermore, permeability data for all gases were found to correlate to the gas condensability and the gas critical pressures, except for hydrogen, suggesting that the nature of the gas is also a significant factor for permeation through rubbery phosphazene membranes. Ideal separation factors () for the CO2/H2 and CO2/CH4 gas pairs were calculated. For CO2/CH4, no increase in was observed with decreasing Tg, however increases in were noted for the CO2/H2 pair.  相似文献   

2.
以溶液复合成膜法制备了密胺苯二醛多孔聚合物(MA)/聚二甲基硅氧烷(PDMS)混合基质膜,利用扫描电镜(SEM)表征了混合基质膜的形貌。考察了不同MA用量下MA/PDMS混合基质膜的气体分离性能,结果表明,MA的加入可以在提高PDMS膜渗透系数的同时提高CO_2气体分离选择性;随着混合基质膜中MA含量的增加,混合基质膜的渗透系数均明显提高,气体分离选择性则先增大后减小。双组分混合气体分离测试结果表明,MA/PDMS(1.2%(w,质量分数))混合基质膜对CO_2/N_2和CO_2/CH_4的分离选择性分别是19.2和6.0,CO_2的渗透系数达到8100Barrer,均高于纯PDMS膜。MA/PDMS(1.2%(w))混合基质膜对CO_2/N_2混合气的分离性能突破了Robeson上限。  相似文献   

3.
兼具高通量和高选择性的气体分离膜是研究膜分离材料的目标.采用相转化法制备了聚酰亚胺非对称膜,并将其作为基底膜材料,分别在其表面修饰掺有金属有机框架材料Cu3(BTC)2 (1, 3, 5-均苯三甲酸合铜),沸石咪唑酯骨架材料ZIF-8以及镁铝水滑石MgAl-LDHs的聚酰胺酸溶液,经热亚胺化后制成非对称混合基质膜.研究了该系列非对称混合基质膜的结构特性和对CO2、CH4和N2气体分离性能;考察了ZIF-8的掺杂量对非对称混合基质膜透气性能的影响.结果表明非对称聚酰亚胺膜的表面修饰可有效地改变膜的表面性质,掺杂ZIF-8的非对称混合基质膜气体的透气性能和选择性都增加,且掺杂量为5% (w)时CO2/N2和CO2/CH4的理想选择性分别高达24和83,为合成高效的CO2分离膜提供了借鉴.  相似文献   

4.
合成了3种不同结构、 粒径和气体吸附性能的金属有机骨架材料(MOFs): 微米级Cu3(BTC)2、 亚微米级ZIF-8和S-Cu3(BTC)2. 氮气吸附等温线分析结果表明, ZIF-8和Cu3(BTC)2具有较大比表面积(1653和1439 m2/g), S-Cu3(BTC)2的比表面积为171.4 m2/g. 用共混法将MOFs直接引入聚酰亚胺中制备了MOFs/聚酰亚胺混合基质膜(MMMs). X射线衍射(XRD)和全反射红外光谱(FTIR-ATR)分析结果表明, MOFs在混合基质膜中保持物理和化学稳定. 气体渗透测试结果表明, MOFs的加入使膜的气体渗透分离性能明显提高, S-Cu3(BTC)2使渗透系数增加了1.75倍; ZIF-8和Cu3(BTC)2使渗透系数增加了3倍左右; 同时, 膜的气体分离系数变化很小.  相似文献   

5.
Microporous carbon membranes were prepared on an -alumina support by a pyrolysis of cationic tertiary amine/anionic polymer composites. The precursor solutions contain a thermosetting resorcinol/formaldehyde (RF) polymer and a cationic tertiary amine. Three types of cationic tertiary amines with different chain lengths were used, such as tetramethlammonium bromide (TMAB), tetrapropylammonium bromide (TPAB) and cetyltrimethylammonium bromide (CTAB). A porous structure was produced by a decomposition of the amine and the resulting pores assisted the further gasification of the RF polymer at high temperature. The carbon/alumina membranes have thin and continuous carbon top layers with a thickness of 1 μm. Gas permeation tests were performed using single gases of CO2, O2, N2, CF4, n-C4H10 and i-C4H10, as well as binary mixtures of CH4/n-C4H10 and N2/CF4 at different temperatures between 23 and 150 °C. The carbon membrane prepared using TMAB showed separation factors higher than 650 for the CH4/n-C4H10 mixtures and higher than 8100 for the N2/CF4 mixture. From the permeation of pure gases with different molecular sizes, the pore sizes of the carbon membrane prepared using TMAB, TPAB and CTAB are estimated to be 4.0, 5.0 and larger than 5.5 Å, respectively, indicating that the micropore size of the carbon membranes is controllable by using different amines.  相似文献   

6.
Block copolymers exhibit a different gas permeation behavior from that of homopolymers. In the diffusion process, the fraction of impermeable regions in the block copolymer decreases the diffusivity and the permeability. As the amount of impermeable regions in the block copolymer increases, the flow paths for the gas diffusion are restricted. Poly(amide-6-b-ethylene oxide) (PEBAX®) copolymer consists of a regular linear chain of rigid polyamide for hard segment interspaced with flexible polyether for soft segment. PEBAX® copolymer shows a typical permeation behavior of rubbery polymers. The permeability of CO2 increases with the pressure originating from the increment of the sorbed CO2 amounts. PEBAX® copolymer shows the high permeability and the high selectivity for polarizable/nonpolar gas pairs. Particularly, the selectivity of CO2 over N2 is 61 and that of SO2 over N2 is 500. For small and nonpolar gases (i.e. He, H2, O2 and N2), the permeability decreases with increasing the molecular size or volume of gases. On the other hand, for polarizable and larger gases (i.e. CO2 and SO2), it shows the high permeability. The high permeability and permselectivity of PEBAX® copolymer are attributed of polarizable gases to polyether segment in PEBAX®.  相似文献   

7.
Supported carbon molecular sieve membranes based on a phenolic resin   总被引:7,自引:0,他引:7  
The preparation of a composite carbon membrane for separation of gas mixtures is described. The membrane is formed by a thin microporous carbon layer (thickness, 2 μm) obtained by pyrolysis of a phenolic resin film supported over a macroporous carbon substrate (pore size, 1 μm; porosity, 30%). The microporous carbon layer exhibits molecular sieving properties and it allows the separation of gases depending on their molecular size. The micropore size was estimated to be around 4.2 Å. Single and mixed gas permeation experiments were performed at different temperatures between 25°C and 150°C, and pressures between 1 and 3.5 bar. The carbon membrane shows high selectivities for the separation of permanent gases like O2/N2 system (selectivity≈10 at 25°C). Gas mixtures like CO2/N2 and CO2/CH4 are successfully separated by means of prepared membranes. For example, the membrane prepared by carbonization at 700°C shows at 25°C the following separation factors: CO2/N2≈45 and CO2/CH4≈160.  相似文献   

8.
采用SXRD,HRTEM,FTIR,SEM和氮气吸附等测试手段对膜结构、形貌、孔径及其分布进行了表征.SXRD和HRTEM结果显示,所制备的膜具有短程有序结构.SEM分析发现膜表面完整.气体渗透实验表明,担载膜具有一定的气体选择性,在0.1MPa下对H2/N2和CH4/N2的分离因子分别为2.25和1.56,气体透过膜孔的扩散由努森机制所控制.等温氮气吸附实验显示,经500℃热处理后氧化硅膜的最可几孔径小于3.34nm,非担载膜的比表面积为919.8m2/g,孔容为0.43mL/g.  相似文献   

9.
采用高温“一步法”缩聚合成了一系列含叔丁基的可溶性芳香聚酰亚胺树脂, 然后通过溶液浇注法制得相应均质薄膜, 并对其气体分离性能进行了测试, 同时研究了二酐结构和温度对聚酰亚胺均质膜气体分离性能的影响. 结果表明, 对于H2, N2, O2, CO2和CH4 等5种气体, 含叔丁基聚酰亚胺均质膜不仅表现出良好的透气性, 而且具有较高的气体透过选择性, 4,4'-(六氟异丙烯)二酞酸酐(6FDA)和均苯四甲酸二酐(PMDA)两类聚酰亚胺均质膜的气体分离性能最佳. 除CO2外, 这两类聚酰亚胺均质膜的气体渗透系数随温度升高而升高, 而所有测试气体在这两种均质膜中的扩散系数和溶解度系数均随温度升高而增大.  相似文献   

10.
A defect-free as-spun hollow fiber membrane with an ultra-thin dense-selective layer is the most desirable configuration in gas separation because it may potentially eliminate post-treatments such as silicone rubber costing, simplify membrane manufacture, and reduce production costs. However, the formation of defect-free as-spun hollow fiber membranes with an ultra-thin dense-selective layer is an extremely challenging task because of the complexity of phase inversion process during the hollow fiber fabrication and the trade-off between the formation of an ultra-thin dense-selective layer and the generation of defects. We have for the first time successfully produced defect-free as-spun Torlon® hollow fiber membranes with an ultra-thin dense layer of around 540 Å from only a one polymer/one solvent binary system at reasonable take-up speeds of 10–50 m/min. The best O2/N2 permselectivity achieved is much higher than the intrinsic value of Torlon® dense films. This is also a pioneering work systematically studying the effects of spinneret dimension and hollow fiber dimension on gas separation performance. Several interesting and important phenomena have been discovered and never been reported: (1) as the spinneret dimension increases, a higher elongation draw ratio is required to produce defect-free hollow fiber membranes; (2) the bigger the spinneret dimension, the higher the selectivity; (3) the bigger the spinneret dimension, the thinner the dense-selective layer. Mechanisms to explain the above observation have been elaborated. The keys to produce hollow fiber with enhanced permselectivity are to (1) remove die swell effects, (2) achieve finer monodisperse interstitial chain space at the dense-selective layer by an optimal draw ratio, and (3) control membrane formation by varying spinneret dimension.  相似文献   

11.
The permeation rates of He, H2, CO2, N2 and O2, are reported for a series of miscible polysulfone-polyimide (PSF-PI) blend membranes synthesized in our laboratory. For gases which do not interact with the polymer matrix (such as He, H2, N2 and O2), gas permeabilities in the miscible blends vary monotonically between those of the pure polymers and can be described by simple mixture equations. In the case of CO2, which interacts with PI, blend permeabilities decrease somewhat, compared to pure PSF and PI. This, however, is accompanied by a two-fold improvement in the critical pressures of plasticization vs. polyimide. Permselectivities of CO2/N2 and H2/CO2 in the blends deviate from mixing theory predictions, in contrast to selectivities of gas pairs which do not interact with PI. Differential scanning calorimetry measurements of pure and PSF/PI blend membranes show one unique glass transition temperature, supporting the miscible character of the PSF/PI mixture. Optical micrographs of the blend membranes clearly indicate perfect homogenization and no phase separation. Frequency shifts and absorption intensity changes in the FTIR spectra of the blends, as compared with those of the pure polymers, indicate mixing at the molecular level. This compatibility in mixing PSF and PI, results essentially in a new blend polymer material, suitable for the preparation of gas separation membranes. Such membranes combine satisfactory gas permeation properties, reduced cost, advanced resistance to harsh chemical and temperature environments, and improved tolerance to plasticizing gases.  相似文献   

12.
This work deals with water-swollen hydrogel membranes for potential CO2 separation applications, with an emphasis on elucidating the role of water in the membrane for gas permeation. A series of hydrogel membranes with a wide range of water contents (0.9–10 g water/g polymer) were prepared from poly(vinyl alcohol), chitosan, carboxyl methyl cellulose, alginic acid and poly(vinylamine), and the permeation of CO2, H2, He and N2 through the membranes at different pressures (200–800 kPa) was studied. The gas permeabilities through the dry dense membranes were measured as well to evaluate the resistance of the polymer matrix in the hydrogel membranes. It was shown that the gas permeability in water-swollen membrane is lower than the gas permeability in water, and the selectivity of the water-swollen membranes to a pair of gases is close to the ratios of their permeabilities in water. The permeability of the water-swollen membranes increases with an increase in the swelling degree of the membrane, and the membrane permeability tends to level off when the water content is sufficiently high. A resistance model was proposed to describe gas permeation through the hydrogel membranes, where the immobilized water retained in the polymer matrix was considered to form transport passageways for gas permeation through the membrane. It was shown that the permeability of hydrogel membranes was primarily determined by the water content in the membrane. The model predictions were consistent with the experimental data for various hydrogel membranes with a wide range of water contents (0.4–10 g water/g polymer).  相似文献   

13.
以TEAOH和TMAOH为有机模板剂,酸处理的UZM-9分子筛为晶种,采用水热法在48 h内合成出分子筛UZM-9,并对其CO2/CH4/N2的吸附分离性能进行了研究。采用XRD、ICP、TG、SEM与气体吸附等手段对晶种法合成的UZM-9分子筛结构、耐水稳定性与吸附性能进行了研究。结果表明,晶种法可以在2 d内合成出硅铝原子比在3以上、收率达到65%的UZM-9分子筛;所得分子筛的CO2吸附容量可以达到5 mmol/g以上,吸附热为34 kJ/mol,CO2/CH4、CO2/N2与CH4/N2的平均分离因子分别为100、240与2.4,CO2分离性能优良且具有一定耐水性能。  相似文献   

14.
A series of copolymers containing ether oxygen groups and amino groups were prepared based on N,N-dimethylaminoethyl methacrylate (DMEMA) and polyethylene glycol methyl ether methyl acrylate (PEGMEMA). The effect of PEGMEMA content in the copolymer on density, free volume, mechanical performance, and H2, CO2, N2 and CH4 gas transport properties of the copolymer was determined. Free volume was characterized using the polymer density and group contribution theory. The permeability of the copolymer to CO2 is high, and both the CO2/N2 and CO2/H2 selectivities are high. For example, the permeability coefficient of PDMAEMA–PEGMEMA-90 (“90” represents the weight percent of PEGMEMA) to CO2 is 112 Barrer and the CO2/N2 and CO2/H2 selectivity coefficients are 31 and 7, respectively. The effect of the temperature on gas transport properties was also determined. Finally, the potential application of the copolymer membranes for CO2/light gases separation was explored.  相似文献   

15.
采用水热法,通过改变合成条件选择性制备出具有球状堆积、薄片状、中空和海绵条状结构的四种不同形貌的H-ZSM-5分子筛,并采用XRD、SEM、Py-FTIR、NH3-TPD、ICP和N2物理吸附等手段对其结构性质进行了表征。将具有尖晶石结构的ZnCr2O4复合氧化物与不同形貌的H-ZSM-5分子筛组成ZnCr2O4/H-ZSM-5双功能催化剂,应用于合成气直接制芳烃(STA)的反应过程,研究了H-ZSM-5分子筛形貌对该双功能催化剂STA性能的影响。结果表明,H-ZSM-5分子筛形貌对ZnCr2O4/H-ZSM-5的合成气制芳烃催化性能具有重要影响;不同形貌H-ZSM-5分子筛的芳烃选择性由高到低顺序依次为球状堆积 > 海绵条状 > 中空结构 > 薄片状结构。其中,ZnCr2O4氧化物与具有球状堆积结构的H-ZSM-5分子筛组成的ZnCr2O4/H-ZSM-5(sphere)双功能催化剂在STA反应过程中表现出最佳的催化性能:在350℃和3.0 MPa条件下,CO转化率为12.6%,芳烃选择性高达68.8%,而甲烷、C2-40烷烃和CO2选择性分别降低至1.3%、14.3%和41.4%。这是由于球状堆积H-ZSM-5分子筛粒径适中(约350 nm),孔道长度适宜,适合芳烃产物的扩散但又能避免低碳烃类过早扩散出酸性分子筛孔道,从而有利于合成气转化中间产物的芳构化,提高芳烃产物的选择性。  相似文献   

16.
Mixed-matrix membranes containing synthesised nano-sized zeolite 4A and PVAc were fabricated to investigate the effect of zeolite loading on membrane morphology, polymer-filler interaction, thermal stability and gas separation properties. SEM studies revealed that, although the membranes with 40 wt % nano-sized zeolite particles were distributed uniformly through the polymer matrix without voids, the membranes with 15 wt % zeolite loading showed agglomeration. With increasing zeolite content, the thermal stability improved, the permeability decreased and the selectivity increased. The effect of silanation on dispersion of 15 wt % zeolite 4A nanoparticles through PVAc was investigated by post-synthesis modification of the zeolite with 3-Aminopropyl(diethoxy)methylsilane. Modification of the nanoparticles improved their dispersion in PVAc, resulting in higher thermal stability than the corresponding unmodified zeolite membrane. Modification also decreased the rigidity of the membrane. Partial pore blockage of the modified zeolite nanoparticles after silanation caused a further decrease in permeability, compared to the 15 wt % unmodified zeolite membrane.  相似文献   

17.
The gas sorption and transport properties of two isomeric polyimides with hexafluoroisopropylidene moieties in the diamine and dianhydride monomers were characterized for a variety of gases at 35°C at pressures up to 60 atm. These materials have structural properties which inhibit intrasegmental rotational mobility and intersegmental chain packing. The effect of isomerism on the physical and gas separation properties of these rigid materials was investigated. The effect of isomerism on the hindrance to packing is reflected in the wide angle X-ray diffraction (WAXD) measurements of the average spacing between adjacent polymer chains. The para connected polyimide showed significant increases in permeability relative to a series of polyimides studied earlier with less packing-disruptive substituents on the polymer backbone. The permeability of the higher flux material was 64 barrers for CO2 and 16 barters for O2. The meta connected polyimide showed large decreases in permeability with corresponding increases in permselectivity when compared to its para counterpart. For example, the permselectivity of the meta material for O2 relative to N2 is 6.9 which is 50% greater than that of the para connected material. The differences in permeability and permselectivity are due to both penetrant solubility and diffusivity effects.  相似文献   

18.
The adsorption method based on solid adsorbents is one of feasible ways to capture and store CO_2. Using the ion exchange method, different zeolites Na KA varying in K+content were produced. The adsorption isotherms and kinetic uptakes were measured. The experimental results show that the optimal NaKA could adsorb significant quantities of CO_2 and little N_2. On the zeolite Na KA with 14.7 at.% K+, the adsorption capacity for pure CO_2 is over 3.10 mmol g~(-1) and the CO_2–N_2 selectivity is about 149 at ambient pressure and temperature. The kinetic CO_2–N_2 selectivity could also achieved 200 within 3 min according to the uptake data. To demonstrate the separation effectiveness, breakthrough curves of pure components and binary mixtures were investigated experimentally and theoretically in a fixed bed. It is found that the breakthrough points of CO_2 and N_2 are almost at the same time under the atmospheric pressure at 348 K with the raw gas composition CO_2/N_2(20:80, v/v). If the pressure has been increased higher than 0.1 MPa, CO_2 would break through the bed much slower than N_2. Therefore, the pressure may become the limiting factor for the separation performance of zeolites NaKA.  相似文献   

19.
The molecular structure of 3-methylthiophene

has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) − r(S---C5) and r(C2=C3) − r(C4=C5) were fixed at the 3–21G* value of 0.002Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   


20.
Polyurethane (PU) and polyurethane–poly(methylmethacrylate) (PMMA) blend membranes were used in gas separation studies. The effects of blend composition, temperature, and pressure on the permeability, diffusivity, and solubility of CO2, H2, O2, CH4, and N2 were investigated. The separation factors of some gas pairs were also evaluated. Positron annihilation lifetime spectroscopy was applied to assess free volume changes as a function of blend composition and temperature. Free volume size increases by approximately 30% with increasing temperature from 10 to 40 °C for all blends studied. The permeability of all gases decreases by approximately 55% with the addition of 30 wt% of PMMA. The permeation process is governed by diffusion, except that of CO2. In relation to the behavior of gas transport as a function of temperature, some important observations are (i) CO2 presents the lowest permeation activation energy value (28 kJ/mol), and (ii) gas pair selectivity increases at low temperatures and is high for gas pairs that present differences in permeation activation energies as high as 15 kJ/mol for the CO2/CH4 gas pair. Furthermore, the study with pressure variations shows that: (i) at elevated pressure, the PU and the blend membrane permeability to CO2 and H2 increases by approximately 35%, and (ii) oxygen-to-nitrogen selectivity increases with pressure as a consequence of the decrease in the permeability to nitrogen in the case of the 30%-PMMA blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号