首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
本文用在位X-射线衍射技术研究了PAN(聚丙烯腈)纤维的预氧化过程。由广角测得不同温度下试样随热解时间而变化的一系列的解析谱图中计算出样品的结晶度、微晶尺寸、晶面间距和芳构化指数,并对这些参数随实验条件变化的瞬间情况给予了解释。同时,还描述了PAN纤维在预氧化过程中的环化动力学行为。求解了各温度下的环化反应速率和活化参数。  相似文献   

2.
郑春满  李效东  余煜玺  赵大方  曹峰 《化学学报》2006,64(15):1581-1586
采用热重-差热分析、元素分析、扫描电子显微镜、凝胶渗透色谱、红外光谱和核磁共振等手段, 研究了聚铝碳硅烷(PACS)纤维预氧化过程中组成、结构演变的规律和反应机理. 结果表明, 空气中PACS纤维从210 ℃左右开始与氧发生放热反应; 随着预氧化温度的升高, 纤维的氧含量逐渐增加, 凝胶含量在氧增重为6~8 wt%时急剧增加, 纤维表面出现细小的微裂纹. 预氧化初期, 主要是Si—H键与氧的反应, 生成Si—O—Si键, 纤维的数均分子量急剧增加, 形成交联结构; 预氧化中期, Si—H键继续反应, Si—O—Si结构明显增多, 同时Si—CH3和Si—H与氧反应, 生成少量的Si—O—C结构; 预氧化后期, 纤维完全交联, 纤维中存在SiC4, SiC3H, Si—O—Si和少量的Si—O—C结构.  相似文献   

3.
高锋  赵江 《高等学校化学学报》2011,32(12):2711-2713
本文报道用同步辐射二维小角X射线散射(2D\|SAXS)研究预氧化过程中张力对PAN纤维缺陷的影响.  相似文献   

4.
聚铝碳硅烷不熔化纤维中氧含量的调节   总被引:1,自引:0,他引:1  
氧含量是SiAlCO纤维在1700℃以上烧结致密化,并得到近化学计量比元素组成的关键因素,而氧元素主要来源于前驱体聚铝碳硅烷(PACS)纤维的不熔化过程.本文采用一种新的不熔化方法,以预氧化-热交联的方式对PACS纤维进行不熔化处理,实现了热解后所得SiAlCO纤维中氧含量在10%~13%(质量分数)范围内可调节.为保证PACS纤维在热交联过程中不熔融,其最低预氧化条件为190℃下保温4h,对应氧引入量为7.87%,预氧化纤维在惰性气氛下450℃保温2h,可实现不熔化.通过凝胶液相色谱(GPC)、红外光谱(IR)及热重-质谱联用(TG-MS)等方法研究预氧化和热交联过程,结果表明,预氧化过程主要是Si—H氧化生成Si—OH,部分Si—OH相互缩聚,在分子间形成Si—O—Si,使PACS数均分子量提高.热交联分为2个阶段,300℃以下主要是残留的Si—OH之间形成Si—O—Si交联结构;300~450℃主要发生Si—H与Si—CH3之间脱H2的缩聚反应,形成Si—CH2—Si交联结构.  相似文献   

5.
建立有机元素分析仪测定聚丙烯腈基预氧化纤维中的氧元素含量的方法.考察了样品舟、裂解温度以及称样量等对氧元素测试结果的影响,优化后的测定条件:样品舟为4 mm×4 mm×11 mm的锡舟,裂解温度为1150℃,称样质量为(3±0.2)mg.氧元素的质量(x)在0.058~0.271 mg范围内与其响应峰面积(y)具有良好...  相似文献   

6.
聚碳硅烷纤维的热交联研究   总被引:8,自引:0,他引:8  
在无氧的情况下对PCS纤维进行热交联时 ,发现在热交联前纤维必须有一个最低的预氧化程度 ,然后通过PCS纤维自身热交联实现预氧化 ,这样可降低纤维 1 3的氧含量 ,制备性能优良的SiC纤维 .研究了低预氧化PCS纤维热交联反应的机理 ,并对引入氧在热交联中所起的作用进行了分析 .研究结果表明 ,PCS纤维能够进行热交联处理所需的最低预氧化程度为纤维氧增重 9% ;热交联的过程主要是消耗了PCS中的SiH键 ,生成SiCH2 Si键 ,形成分子间交联 ;引入的少量氧预氧化时生成SiOH键 ,热交联中发生脱水反应生成SiOSi键 ,在纤维表层形成保护层 ,保证了纤维的热交联顺利进行  相似文献   

7.
PAN预氧丝环化程度的定量表征   总被引:1,自引:0,他引:1  
应用恒温定长方法制备聚丙烯腈(PAN)预氧丝, 并测量该预氧丝长周期多层结构的小角X射线衍射谱. 解析图谱发现, 经不同预氧化时间所得预氧丝的长周期L均为11.7 nm; 当预氧时间从20 min增加到210 min, 预氧丝中环化结构相的体积分数X0/L从7.9%增加到86.5%. 而应用广角X射线衍射法测得同批的预氧丝试样环化指数AI值则小很多. 因此, 用X0/L定量表征预氧丝环化程度更为严格准确.  相似文献   

8.
利用静电纺丝和预氧化技术,制备了预氧化聚丙烯腈纤维膜负载SO42-/Ti O2固体酸催化剂,采用扫描电子显微镜(SEM)和能谱(SEM-EDS)、红外光谱(FT-IR)和X射线衍射光谱(XRD)对催化剂的结构和性能进行了表征。结果表明预氧化过程不会对催化剂的纤维结构产生影响,Ti元素也均匀分布在纤维上;预氧化过程使聚丙烯腈分子直链结构转变为共轭结构。该催化剂对缩醛酮反应的催化结果显示:预氧化聚丙烯腈纤维的共轭结构有利于提高SO42-/Ti O2固体酸的催化活性,催化缩醛酮反应的产率87%,而且纤维膜结构方便了催化剂的回收和重复使用,该催化剂可以重复使用5次保持活性不变。  相似文献   

9.
在环境治理中,光催化氧化是去除有机污染物的一种很有前途的技术。与吸附、生物降解和化学氧化等方法相比,光催化氧化可以通过环境友好的方式,完全、方便、廉价地消除有机污染物。光催化氧化中,又以可见光光催化氧化更具优势,这是因为可见光在太阳光中的能量比例较高。碘氧化铋(BiOI)是一种很有前途的可见光光催化剂,不仅具有较窄的带隙,而且具有较低的价带(VB),其产生的光生空穴能氧化分解多种有机污染物。然而,BiOI粉末回收困难、比表面积低、载流子复合快等缺点限制了其实际应用。同时,光催化剂的柔性和分级结构有利于这些材料的操作、回收和性能改进,也是非常可取的特性。为此,本文以j静电纺丝制备的聚丙烯腈(PAN)纳米纤维为基底,通过原位反应的方法,制备了具有分级结构的柔性BiOI/PAN复合纤维。在BiOI/PAN纤维中,BiOI薄片围绕PAN纤维、垂直均匀地排列在其表面,形成独特的分级结构。在制备的过程中,PAN纤维中掺入的Bi(Ⅲ)会先形成的BiOI晶核,并成为BiOI纳米片生长的种子。这对分级结构的形成至关重要。紫外-可见漫反射光谱和光致发光发射分析显示,这种分级结构可以改善BiOI/PAN光纤的光吸收,促进光生载流子的形成。因此,BiOI/PAN纤维比BiOI粉末具有更高的光催化活性。进一步,用预先制备的石墨烯量子点(GQDs)对BiOI/PAN纤维进行修饰,可制备出GQDs修饰的BiOI/PAN纤维复合材料(GQD-BiOI/PAN)。所制备GQD-BiOI/PAN的形貌与BiOI/PAN纤维几乎是一样的。通过制备方法、光致发光发射、反应自由基测试和X射线光电子能谱(XPS)的综合分析,证实了GQDs与BiOI之间会形成梯型(S型)异质结。这种S型异质结不仅能有效地抑制光生空穴的复合,而且能保留GQDs的最低未占据分子轨道(LUMO)上还原能力更强的电子,以及BiOI的VB上氧化能力更强的空穴,用于光催化降解苯酚。在纤维分级结构和S型异质结的共同作用下,GQD-BiOI/PAN在可见光光催化氧化苯酚中,其性能明显优于BiOI粉末和BiOI/PAN纳米纤维。此外,由于粘结紧密,GQD-BIOI/PAN可以进行裁剪和徒手操作,回收利用非常方便。在循环性能测试中,没有明显的样品损失和光催化活性的降低的现象。本文的工作为制备柔性光催化剂提供了一条新的途径,并对光催化剂的增强提供了新的视野。  相似文献   

10.
以聚硅碳硅烷(PSCS)与乙酰丙酮铝(Al(AcAc)3)为原料,在常压高温条件下反应制备出聚铝碳硅烷(PACS),经过熔融纺丝制备了PACS纤维.应用GPC、IR、XPS、29Si-NMR、27Al-NMR、TG、SEM、元素分析和增重等一系列分析,分别对PACS纤维的微观组成、结构以及性能进行了分析.研究结果表明,以原料质量配比为6∶100(Al(AcAc)3∶PSCS)合成的PACS化学式为SiC2.0H7.5O0.13Al0.018,数均分子量为1700左右,最适宜制备PACS纤维;PACS纤维中主要存在SiC4、SiC3H等结构,同时存在Si—O—Al键;在氮气气氛中,PACS纤维的陶瓷产率达到52%左右;预氧化处理,PACS纤维中Si—H键与空气中的氧反应形成Si—O—Si交联结构,较聚碳硅烷(PCS)纤维易于氧化,经过预氧化的PACS纤维陶瓷产率达到80%左右,是制备耐超高温SiC(Al)陶瓷纤维的合适纤维;用预氧化PACS纤维制备的SiC(OAl)纤维和SiC(Al)纤维抗拉强度高,耐高温性能好.  相似文献   

11.
Heat treatment of aramid fiber was conducted in the temperature range 300–710°C nominally for 10 and 30 s in both static air and flowing nitrogen atmosphere. Crystallinity, crystal orientation, and crystallite size were determined using x-ray diffraction. Fibers with a skin–core structure were produced at intermediate temperatures, as revealed by scanning electron microscopy of fibers after partial dissolution of the fiber in 95–98% sulfuric acid. The skin, which forms in both nitrogen and air, is amorphous and brittle. It is insoluble in sulfuric acid, suggesting it is a cross-linked polymer. Formation of the skin may be facilitated by the removal of an aggressive chemical species that forms during heat treatment. The species may diffuse out of the outer layer of the fiber, allowing it to cross-link. The molecular weight of the dissolved core, analyzed using intrinsic viscosity, decreases with increasing heat treatment temperature. The tenacity, modulus, elongation-to-break, and toughness of fibers with a skin–core structure decrease with heat treatment and the fiber loses its fibrillar character. Mechanical property reductions are greater in air than nitrogen. X-ray data are also consistent with the notion that oxygen assists attack of crystals at high temperatures. Scanning electron microscopy shows that fibers have become skin–core composites with quite different mechanical properties between the two regions. A fiber failure mechanism is proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
A review of heat treatment on polyacrylonitrile fiber   总被引:3,自引:0,他引:3  
Developing carbon fiber from polyacrylonitrile (PAN) based fiber is generally subjected to three processes namely stabilization, carbonization, and graphitization under controlled conditions. The PAN fiber is first stretched and simultaneously oxidized in a temperature range of 200-300 °C. This treatment converts thermoplastic PAN to a non-plastic cyclic or a ladder compound. After oxidation, the fibers are carbonized at about 1000 °C in inert atmosphere which is usually nitrogen. Then, in order to improve the ordering and orientation of the crystallites in the direction of the fiber axis, the fiber must be heated at about 1500-3000 °C until the polymer contains 92-100%. High temperature process generally leads to higher modulus fibers which expel impurities in the chain as volatile by-products. During heating treatment, the fiber shrinks in diameter, builds the structure into a large structure and upgrades the strength by removing the initial nitrogen content of PAN precursor and the timing of nitrogen. With better-controlled condition, the strength of the fiber can achieve up to 400 GPa after this pyrolysis process.  相似文献   

13.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The fiber orientation distribution is one of the important microstructure variables for thermoplastic composites reinforced with discontinuous fibers. In this paper, the long fibers in the injection molded part are measured in detail by micro X-ray CT. A three dimensional (3D) structure of the sample is built and two dimensional images are generated for image analysis. The orientation tensor of fibers is calculated in the flow plane. It shows a symmetric distribution of fibers through the thickness direction, which consists of outer skin, transition zone and the core. The skin layer is so thin that it has only one layer of highly oriented fibers. The core layer also has highly oriented fibers but the direction of fibers is different from that in the skin layer. Nevertheless, the clustering of the fibers is characterized quantitatively in the core. The transition zone can be divided into two subzones by the principal directions of the tensor.  相似文献   

15.
Structural regularities of the transformation of PAN fibers into high-strength sp2-carbon fiber by high-temperature thermomechanical treatment were established using Raman spectroscopy and X-ray diffraction. Radial heterogeneity of the fiber structure was revealed and quantitatively characterized by Raman micro-mapping.  相似文献   

16.
经四氯化锡处理的聚丙烯腈纤维,在进一步热处理过程中可以成为一种高分子半导纤维。它具有如下四个特点:1.纤维电阻率在10~3—10~(12)欧姆·厘米范围内可以控制热处理温度而随意调节。2.水解处理干燥后纤维的电阻值基本不变。3.有足够的机械强度可以进行多种形式的加工。4.纤维的电阻-温度、电导率-频率依赖关系,直流伏-安特性的试验结果表明它具有有机半导体特性,是一种兼有良好电性能和力学性能的高分子半导纤维。  相似文献   

17.
A facile means for obtaining submicrometer carbon fibers with a nanoporous structure is presented. A mixture of polyacrylonitrile (PAN) and a copolymer of acrylonitrile and methyl methacrylate (poly(AN-co-MMA)) in dimethylformamide was electrospun into submicrometer fibers with a microphase-separated structure. During the followed oxidation process, the copolymer domains were pyrolyzed, resulting in a nanoporous structure that was preserved after carbonization. The microphase-separated structure of the PAN/poly(AN-co-MMA) electrospun fibers, the morphology, and porous structure of both the oxidized and the carbonized fibers were observed with scanning electron microscopy and transmission electron microscopy. The carbon fibers have diameters ranging from several hundred nanometers to about 1 microm. The nanopores or nanoslits throughout the fiber surface and interior with diameters of several tens of nanometers are interconnected and oriented along the longitudinal axis of the fibers. This unique nanoporous morphology similar to the microphase-separated structure in the PAN/poly(AN-co-MMA) fibers is attributed to the rapid phase separation, solidification, as well as the stretching of the fibers during electrospinning. The pore volume and pore size distribution of the carbonized fibers were investigated by nitrogen adsorption and desorption.  相似文献   

18.
A hierarchical structural model for liquid-crystalline polyester reinforced with short glass fibers has been determined by using injection-molded bars. The gradient structure showed similar orientations between the glass fibers and the molecular orientation of the matrix. In the fiber-reinforced composites, the core failed prior to the skin by matrix cracking and transverse fiber pull-out as evidenced by the initial growth of parabolic cracks in the core. In the 30 wt% composite this was followed by complex cooperative phenomena involving fiber breakage, debonding, pull-out, and matrix deformation in the skin. The 50 wt% composite failed prematurely due to inadequate fiber/matrix interactions in the skin structure. Acoustic emission coupled with microscopy provided mechanistic insight throughout this work into the amount and intensity of specific failure mechanisms.  相似文献   

19.
The main products of graft copolymerization of acrylonitrile (AN) onto casein in concentrated aqueous solution of sodium thiocyanate in homogeneous phase were characterized as a graft copolymer (AN-g-casein) by Fourier transform infrared. The effects of the monomer concentration, initiator concentration, reaction temperature and reaction time on copolymerization were investigated. The result of WAXD showed that the major part of casein in graft copolymer is amorphous. The SDSC determination showed that the lateral order of PAN, the side chain of copolymer, decreases and the lateral order distribution becomes wider with the increase of the casein component in copolymer. It revealed that the two systems of AN-g-casein copolymer are incompatible by an investigation of DMTA, SEM. The two systems of AN-g-casein exist in separating phases, but tie up each other. So the phenomena of characteristic boundary relaxation occur.Direct spinning of graft copolymer in concentrated aqueous solution of sodium thiocyanate in homogeneous phase was successfully carried out. The skin-core layer structure of AN-g-casein fiber cross-section was observed by scanning electron microscope (SEM). In the core layer, the dimension of phase domain of casein is about from 20 to 60 nm. When the fiber was drawn into broken, microfibrillation occurs, the fiber skin layer is compact, and its broken section is flat. Many long and thin casein strips are formed in the surface of the fiber, respective crystalline grade of two components is scarcely effected by the change of the content of casein. AN-g-casein fibers have good hygroscopicity and dyeability, and more, they can be dyed by acidic dyestuff and cationic dyestuff. AN-g-casein fiber still has good mechanical properties, so AN-g-casein fiber is a new type modified “silk-like” fiber for wide application.  相似文献   

20.

In this paper, the diffusion mechanism of as‐spun PAN fiber was investigated in dimethyl sulfoxide‐water by determining the dynamic compositions of the fibers and the diffusion coefficients of solvent and nonsolvent during coagulation. The diffusion process could be divided into two stages. Results showed that the first stage of the diffusion process was the most important during the whole process, which was fundamental to further study on the formation mechanism. Also, compared with wet spinning, the dry‐jet wet spinning method had the advantage of mild coagulating at a high jet‐stretch. At high concentrations, the diffusion coefficients increased and the ratio of solvent diffusion coefficient to nonsolvent diffusion coefficient decreased; an increasing temperature resulted in the increase of both diffusion coefficients with a decrease in their ratios. To some extent, for the PAN‐DMSO‐water system, the more the ratios Ds*/Dn* tended to 1, the more the cross‐section shapes of as‐spun PAN fiber tended to be circular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号