首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
利用低分子量聚碳硅烷(L-PCS)与乙酰丙酮铝间的热聚合反应,通过调节原料配比和反应条件,合成了不同Al含量,且具有良好可纺性的聚铝碳硅烷(PACS).研究了PACS的分子量分布和分子结构,PACS纤维空气不熔化特点并与PCS纤维进行比较.结果表明,[Al(Ac Ac)3]以-Al(Ac Ac)2悬挂和-Al(Ac Ac)-桥联两种方式接入L-PCS分子结构,PACS分子量呈双峰分布.PACS中Si—H含量和反应活性随Al含量增加而下降,氧化生成的Si—OH难以进一步形成Si—O—Si交联结构.这导致Al含量越高,凝胶点温度越高,凝胶含量随温度升高增加缓慢,同时引入多余氧.通过预氧化与高温处理相结合的方法,将不熔化纤维中氧含量控制在11 wt%以下.高温处理过程中发生自交联:Si—OH间脱水生成Si—O—Si;Si—H与Si—OH或Si—CH3脱氢生成Si—CH2—Si.  相似文献   

2.
以聚硅碳硅烷(PSCS)与乙酰丙酮铝(Al(AcAc)3)为原料,在常压高温条件下反应制备出聚铝碳硅烷(PACS),经过熔融纺丝制备了PACS纤维.应用GPC、IR、XPS、29Si-NMR、27Al-NMR、TG、SEM、元素分析和增重等一系列分析,分别对PACS纤维的微观组成、结构以及性能进行了分析.研究结果表明,以原料质量配比为6∶100(Al(AcAc)3∶PSCS)合成的PACS化学式为SiC2.0H7.5O0.13Al0.018,数均分子量为1700左右,最适宜制备PACS纤维;PACS纤维中主要存在SiC4、SiC3H等结构,同时存在Si—O—Al键;在氮气气氛中,PACS纤维的陶瓷产率达到52%左右;预氧化处理,PACS纤维中Si—H键与空气中的氧反应形成Si—O—Si交联结构,较聚碳硅烷(PCS)纤维易于氧化,经过预氧化的PACS纤维陶瓷产率达到80%左右,是制备耐超高温SiC(Al)陶瓷纤维的合适纤维;用预氧化PACS纤维制备的SiC(OAl)纤维和SiC(Al)纤维抗拉强度高,耐高温性能好.  相似文献   

3.
耐超高温SiC(A1)纤维先驱体——聚铝碳硅烷纤维的研究   总被引:1,自引:0,他引:1  
以聚硅碳硅烷(PSCS)与乙酰丙酮铝(A1(AcAc)3)为原料,在常压高温条件下反应制备出聚铝碳硅烷(PACS),经过熔融纺丝制备了PACS纤维.应用GPC、IR、XPS、^29Si.NMR、^29A1,NMR、TG、SEM、元素分析和增重等一系列分析,分别对PACS纤维的微观组成、结构以及性能进行了分析.研究结果表明,以原料质量配比为6:100(AI(AcAc)3:PSCS)合成的PACS化学式为SiQ2.0H7.5O0.13,Al0.018数均分子量为1700左右,最适宜制备PACS纤维;PACS纤维中主要存在SiC4、SiC3H等结构,同时存在si—O—Al键;在氮气气氛中,PACS纤维的陶瓷产率达到52%左右;预氧化处理,PACS纤维中Si—H键与空气中的氧反应形成Si—O—Si交联结构,较聚碳硅烷(PCS)纤维易于氧化,经过预氧化的PACS纤维陶瓷产率达到80%左右,是制备耐超高温SiC(A1)陶瓷纤维的合适纤维;用预氧化PACS纤维制备的SiC(OAl)纤维和SiC(A1)纤维抗拉强度高,耐高温性能好.  相似文献   

4.
利用热重分析仪(TGA)对预氧化聚铝碳硅烷(PACS)纤维进行了热动力学研究, 用改良的Coats-Redfern法计算了动力学参数, 用Doyle法计算了理论失重值, 并根据FT-IR, XRD和SEM对其热分解的机理进行了分析. 结果表明, 在热分解反应的主要阶段, 预氧化纤维的反应活化能低于PACS纤维, 氧的引入有利于纤维的热分解; 快速升温有利于预氧化PACS纤维的热分解. 在初始分解阶段, 主要为低分子量的PACS和H2O的逸出, 同时≡Si—H键之间以及≡Si—H与≡Si—CH3键发生了脱氢、脱CH4反应, 从而导致交联程度的增加; 随热分解温度进一步的提高, 分子的有机侧基急剧热解, 分解产物从有机物转变为存在部分微晶的无机结构; 热分解温度继续提高, 纤维结构进一步完善, 1300 ℃左右, β-SiC晶粒大小约为2~4 nm左右, 纤维具有较好的性能.  相似文献   

5.
聚铝碳硅烷不熔化纤维中氧含量的调节   总被引:1,自引:0,他引:1  
氧含量是SiAlCO纤维在1700℃以上烧结致密化,并得到近化学计量比元素组成的关键因素,而氧元素主要来源于前驱体聚铝碳硅烷(PACS)纤维的不熔化过程.本文采用一种新的不熔化方法,以预氧化-热交联的方式对PACS纤维进行不熔化处理,实现了热解后所得SiAlCO纤维中氧含量在10%~13%(质量分数)范围内可调节.为保证PACS纤维在热交联过程中不熔融,其最低预氧化条件为190℃下保温4h,对应氧引入量为7.87%,预氧化纤维在惰性气氛下450℃保温2h,可实现不熔化.通过凝胶液相色谱(GPC)、红外光谱(IR)及热重-质谱联用(TG-MS)等方法研究预氧化和热交联过程,结果表明,预氧化过程主要是Si—H氧化生成Si—OH,部分Si—OH相互缩聚,在分子间形成Si—O—Si,使PACS数均分子量提高.热交联分为2个阶段,300℃以下主要是残留的Si—OH之间形成Si—O—Si交联结构;300~450℃主要发生Si—H与Si—CH3之间脱H2的缩聚反应,形成Si—CH2—Si交联结构.  相似文献   

6.
用密度泛函理论在UB3LYP/6-31G(d)水平上研究了二元硅氧环与CFn (n=1~3)自由基的反应, 弄清了微观反应机理, 计算了反应的活化能和反应热. 计算结果表明反应按两类相互竞争的机理进行: 一类是不涉及C—F键断裂的反应, 另一类是Si—O和C—F键同时断裂的反应. CF2自由基与二元硅氧环反应所需活化能最小、驱动力最大, 是Si—O键最有效的刻蚀剂, 与实验结果一致.  相似文献   

7.
聚碳硅烷纤维的热交联研究   总被引:8,自引:0,他引:8  
在无氧的情况下对PCS纤维进行热交联时 ,发现在热交联前纤维必须有一个最低的预氧化程度 ,然后通过PCS纤维自身热交联实现预氧化 ,这样可降低纤维 1 3的氧含量 ,制备性能优良的SiC纤维 .研究了低预氧化PCS纤维热交联反应的机理 ,并对引入氧在热交联中所起的作用进行了分析 .研究结果表明 ,PCS纤维能够进行热交联处理所需的最低预氧化程度为纤维氧增重 9% ;热交联的过程主要是消耗了PCS中的SiH键 ,生成SiCH2 Si键 ,形成分子间交联 ;引入的少量氧预氧化时生成SiOH键 ,热交联中发生脱水反应生成SiOSi键 ,在纤维表层形成保护层 ,保证了纤维的热交联顺利进行  相似文献   

8.
郭丽  虞忠衡  朱士正  陈庆云 《化学学报》2005,63(10):897-902
用密度泛函理论研究了CF3SO3CF2CF3+F的碳氧键断裂反应的机理. 首先, 用DFT方法优化了反应物、中间体、过渡态、产物的平衡构型, 分析了碳氧键断裂反应的势能面变化. 发现在SN2反应机理中, 除了S—O断裂SN2反应外, 引起C—O键断裂的同面进攻也是一个可能的反应途径. 理论计算表明, 最终反应的产物是受热力学控制的, S—O键的断裂绝对地优于C—O的断裂. 因此, C—O断裂的同面机理虽然是可能的, 但却难以被实验观察到. 本文还讨论了端基 —F3在同面SN2反应中的邻位效应, 以及基组对这个效应的影响.  相似文献   

9.
杨景明  杨露姣  余煜玺  程璇  张颖 《化学学报》2009,67(17):2047-2051
为了研究合成温度对聚铝碳硅烷(PACS)结构的影响, 采用具有Si—C骨架结构的低分子量液态聚碳硅烷(LPCS)与乙酰丙酮铝[Al(AcAc)3]为原料, 在300, 360和420 ℃下分别合成了固态PACS, 并对合成的PACS样品进行元素组成及结构表征. 表征结果显示, 合成温度明显影响样品的Al, O含量及Si—H键数量. 合成温度升高, Al含量与O含量增大, 但PACS中的Si—H键数量急剧减少, 在360 ℃下合成的样品具有理论Al含量, 而在300和420 ℃下合成的样品的Al含量分别小于和大于理论Al含量. 27Al MAS NMR结果显示, Al与O形成AlO4, AlO5和AlO6 三种配位形式. 反应过程中消耗Si—H键形成Si—O—Al交联结构是PACS数均分子量及多分散系数增加的主要原因.  相似文献   

10.
NO2气相硝化金刚烷的计算研究   总被引:3,自引:0,他引:3  
运用密度泛函理论(DFT)和半经验MO-PM3方法研究了NO2气相硝化金刚烷反应机理. 计算结果表明, NO2不能直接取代金刚烷H; 在B3LYP/6-311++G(3df,2pd)//B3LYP/6-31G* 较高水平下, 对三个可能机理的反应势垒(Ea)的精确计算表明, 该反应的决速步骤为NO2中O和N进攻1-H的竞争过程, 且1-硝基金刚烷为主要产物. NO2中O进攻1-H决速反应过程中, 分子几何、原子自然电荷及IR光谱变化表明, C—H键的断裂和N—H键的形成是一个协同过程; 参与新键形成和旧键断裂原子C(1), H(11), O(28), O(29)和N(27)的原子自然电荷及与其相关的键长、键角有明显的变化. 反应过程中体系偶极矩的变化表明, 极性溶剂能降低反应势垒, 有利于反应的进行.  相似文献   

11.
A study has been made of the crystal and molecular structure of 1-hydrosilatrane HSi(OCH2CH2)3N. The quantum chemical calculations of its crystal structure have been carried out. According to an estimate of the energy, the coordination bond N→Si is by 5 kcal mol?1 stronger than that in the crystal of 1-methylsilatrane. The charge values calculated within the framework of the topological analysis of the electron density demonstrate that the electron density of the coordination bond N→Si is primarily transferred to the region of the equatorial bonds Si—O and, to a lesser extent, to the bond Si—H. On going from the isolated molecule of 1-hydrosilatrane to its crystal, the interatomic distance N—Si decreases, mainly owing to the weak intermolecular interaction C—H...O.  相似文献   

12.
A synthetic route to polysilaethers containing moiety Si? H bonds in the side chain (PSEMH) is reported that allows access to hitherto inaccessible oxygen‐interrupt polysilanes. By a Wurtz reductive coupling reaction, an equimolar ratio of dichloromethylsilane to alkali metal yields dichlorodisilane. The alcoholysis of Wurtz coupling resultants is in situ performed, and the polycondensation of hydrolysis occurs simultaneously in the presence of a small amount of N,N‐(dimethylamino)pyridine. The linear polymer is monomodal PSEMH with molecular weights as high as 24,900. The ultraviolet absorption at 292 nm is due to the interactions of the σ(Si? Si) orbital electron delocalization and the pπ(O)–σ*π(Si? O) delocalization along the (SiSiO)n skeleton. It is redshifted in comparison with those of permethyl polysilaethers analogues and blueshifted in comparison with those of poly(dialkylsilane)s. The fluorescence emissions of the polysilaethers containing moiety Si? H bonds in the side chain are in a narrow range of 300–400 nm. Si? H bonds in polysilaethers play an important role in hydrosilylation reactions. The polysilaethers containing moiety Si? H bonds in the side chains can be used as the starting point for further functionalization via hydrosilylation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2476–2482, 2005  相似文献   

13.
The synthesis of polyaluminocarbosilane (PACS) using liquid polysilacarbosilane (PSCS) and aluminum acetylacetonate [Al (acac)3] by a high‐pressure method is reported for the first time. The effects of reaction time, temperature and feed ratio on the structure of PACS are investigated in detail by gel permeation chromatography, Fourier transform‐infrared, 1H‐NMR, 29Si‐NMR and 27Al‐NMR methods. It was found that the molecular weight and its polydispersity, as well as the branching degree of the molecular structure of PACS, increase with reaction time and temperature. Increasing the weight percentage of Al (acac)3 has a similar effect as temperature. Combined with the gas chromatography–mass spectroscopy results, the reaction mechanism is proposed, which contains three main reactions: (i) cleavage and rearrangement reaction of PSCS; (ii) silicon‐free radicals react with Al (acac)3, leading to cleavage of O=C and/or O‐C bonds and formation of AlOx ligands; and (iii) conversion reaction of Al ligands from AlO6 into AlO5 and AlO4. It is also found that PACS prepared by high‐pressure method has a lower branched molecular structure in comparison to its analog prepared under ambient pressure conditions, and it is achieved to increase the molecular weight and ceramic yield of PACS, which is beneficial for the processing and overall quality of the final product.  相似文献   

14.
Crystals of hexa‐tert‐butyldisilane, C24H54Si2, undergo a reversible phase transition at 179 (2) K. The space group changes from Ibca (high temperature) to Pbca (low temperature), but the lattice constants a, b and c do not change significantly during the phase transition. The crystallographic twofold axis of the molecule in the high‐temperature phase is replaced by a noncrystallographic twofold axis in the low‐temperature phase. The angle between the two axes is 2.36 (4)°. The centre of the molecule undergoes a translation of 0.123 (1) Å during the phase transition, but the conformation angles of the molecule remain unchanged. Between the two tri‐tert‐butylsilyl subunits there are six short repulsive intramolecular C—H...H—C contacts, with H...H distances between 2.02 and 2.04 Å, resulting in a significant lengthening of the Si—Si and Si—C bonds. The Si—Si bond length is 2.6863 (5) Å and the Si—C bond lengths are between 1.9860 (14) and 1.9933 (14) Å. Torsion angles about the Si—Si and Si—C bonds deviate by approximately 15° from the values expected for staggered conformations due to intramolecular steric H...H repulsions. A new polymorph is reported for the crystal structure of 1,1,2,2‐tetra‐tert‐butyl‐1,2‐diphenyldisilane, C28H46Si2. It has two independent molecules with rather similar conformations. The Si—Si bond lengths are 2.4869 (8) and 2.4944 (8) Å. The C—Si—Si—C torsion angles deviate by between −3.4 (1) and −18.5 (1)° from the values expected for a staggered conformation. These deviations result from steric interactions. Four Si—C(t‐Bu) bonds are almost staggered, while the other four Si—C(t‐Bu) bonds are intermediate between a staggered and an eclipsed conformation. The latter Si—C(t‐Bu) bonds are about 0.019 (2) Å longer than the staggered Si—C(t‐Bu) bonds.  相似文献   

15.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

16.
聚锆碳硅烷陶瓷先驱体的制备与表征   总被引:1,自引:0,他引:1  
为了提高SiC陶瓷纤维的综合性能,利用聚二甲基硅烷(PDMS)热解制得的液相产物聚硅碳硅烷(PSCS)与乙酰丙酮锆(Zr(AcAc)4)反应,制备了含锆SiC陶瓷纤维的先驱体聚锆碳硅烷(PZCS).选用液相PSCS作为反应原料,可使锆元素在先驱体中分布更加均匀,并能防止Zr(AcAc)4在反应过程中升华.实验合成的PZCS化学式为SiC1.94HxO0.066Zr0.0104,数均分子量Mn=200~400,再成型性良好.反应机理研究表明,反应过程中存在PSCS裂解重排反应,Si—H键在反应中显示出很高的活性,PZCS分子量的增加是PSCS形成的Si—H键与Zr(AcAc)4的配位基发生交联反应的结果.利用PZCS制备的Si—Zr—C—O陶瓷纤维平均强度2.6GPa,平均直径11μm,性能优异.  相似文献   

17.
The intermolecular rotational potential energies for poly(dimethylsiloxane) (PDMS) chains aredirectly obtained from a priori probability P_(αβ). Here the differing statistical weight matrices for the Si-Oand O-Si bonds are considered in calculating the configuration partition function. In the Bahar's model, asthe same statistical weight matrices for the Si -O and O- Si bonds are adopted, there exists a large deviationof αpriori probability P_(αβ) between the theory and the molecular dynamics (MD) simulation. Our model givessatisfactory agreement with experiment on the mean-square unperturbed end-to-end distance, the mean-square dipole moment and its temperature dependence, and the molar cyclization equilibrium constants fordimethylsiloxane oligomers. This new rotational isomeric state approach can be widely applied to otherchains, such as -CH_2-C[(CH_2)_mH]_2- and -O-Si[(CH_2)_mH]_2 for arbitrary m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号