首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
耐超高温SiC(A1)纤维先驱体——聚铝碳硅烷纤维的研究   总被引:1,自引:0,他引:1  
以聚硅碳硅烷(PSCS)与乙酰丙酮铝(A1(AcAc)3)为原料,在常压高温条件下反应制备出聚铝碳硅烷(PACS),经过熔融纺丝制备了PACS纤维.应用GPC、IR、XPS、^29Si.NMR、^29A1,NMR、TG、SEM、元素分析和增重等一系列分析,分别对PACS纤维的微观组成、结构以及性能进行了分析.研究结果表明,以原料质量配比为6:100(AI(AcAc)3:PSCS)合成的PACS化学式为SiQ2.0H7.5O0.13,Al0.018数均分子量为1700左右,最适宜制备PACS纤维;PACS纤维中主要存在SiC4、SiC3H等结构,同时存在si—O—Al键;在氮气气氛中,PACS纤维的陶瓷产率达到52%左右;预氧化处理,PACS纤维中Si—H键与空气中的氧反应形成Si—O—Si交联结构,较聚碳硅烷(PCS)纤维易于氧化,经过预氧化的PACS纤维陶瓷产率达到80%左右,是制备耐超高温SiC(A1)陶瓷纤维的合适纤维;用预氧化PACS纤维制备的SiC(OAl)纤维和SiC(A1)纤维抗拉强度高,耐高温性能好.  相似文献   

2.
赵大方  李效东  王海哲  郑春满  王浩 《化学学报》2008,66(21):2397-2402
采用不同比例的乙酰丙酮铝[Al(AcAc)3]与聚硅碳硅烷(PSCS)反应制备含铝碳化硅陶瓷的先驱体聚铝碳硅烷(PACS). 采用气相凝胶色谱(GPC)、化学分析和红外等手段对不同铝含量的PACS组成和结构进行了表征, 研究了铝含量对PACS结构和性能的影响. 结果表明, 随着铝含量的增加, PACS的氧含量增加, 分子量分布变宽, 主要活性基团Si—H键的含量降低, PACS的可纺性降低. 当Al(AcAc)3/PSCS(质量比)大于20%以后, PACS不可纺. 热重-差热分析(TG-DTA)的研究表明: 当制备PACS的Al(AcAc)3/PSCS(质量比)大于4%, PACS在N2中400~560 ℃之间的失重明显降低. 铝含量在0.4~0.7 wt%的PACS, 制备的Si-Al-C-O纤维抗张强度最高. Al(AcAc)3/PSCS=6 wt%时制备的PACS, 烧结的SiC(Al)纤维最致密.  相似文献   

3.
聚锆碳硅烷陶瓷先驱体的制备与表征   总被引:1,自引:0,他引:1  
为了提高SiC陶瓷纤维的综合性能,利用聚二甲基硅烷(PDMS)热解制得的液相产物聚硅碳硅烷(PSCS)与乙酰丙酮锆(Zr(AcAc)4)反应,制备了含锆SiC陶瓷纤维的先驱体聚锆碳硅烷(PZCS).选用液相PSCS作为反应原料,可使锆元素在先驱体中分布更加均匀,并能防止Zr(AcAc)4在反应过程中升华.实验合成的PZCS化学式为SiC1.94HxO0.066Zr0.0104,数均分子量Mn=200~400,再成型性良好.反应机理研究表明,反应过程中存在PSCS裂解重排反应,Si—H键在反应中显示出很高的活性,PZCS分子量的增加是PSCS形成的Si—H键与Zr(AcAc)4的配位基发生交联反应的结果.利用PZCS制备的Si—Zr—C—O陶瓷纤维平均强度2.6GPa,平均直径11μm,性能优异.  相似文献   

4.
郑春满  李效东  余煜玺  赵大方  曹峰 《化学学报》2006,64(15):1581-1586
采用热重-差热分析、元素分析、扫描电子显微镜、凝胶渗透色谱、红外光谱和核磁共振等手段, 研究了聚铝碳硅烷(PACS)纤维预氧化过程中组成、结构演变的规律和反应机理. 结果表明, 空气中PACS纤维从210 ℃左右开始与氧发生放热反应; 随着预氧化温度的升高, 纤维的氧含量逐渐增加, 凝胶含量在氧增重为6~8 wt%时急剧增加, 纤维表面出现细小的微裂纹. 预氧化初期, 主要是Si—H键与氧的反应, 生成Si—O—Si键, 纤维的数均分子量急剧增加, 形成交联结构; 预氧化中期, Si—H键继续反应, Si—O—Si结构明显增多, 同时Si—CH3和Si—H与氧反应, 生成少量的Si—O—C结构; 预氧化后期, 纤维完全交联, 纤维中存在SiC4, SiC3H, Si—O—Si和少量的Si—O—C结构.  相似文献   

5.
杨景明  杨露姣  余煜玺  程璇  张颖 《化学学报》2009,67(17):2047-2051
为了研究合成温度对聚铝碳硅烷(PACS)结构的影响, 采用具有Si—C骨架结构的低分子量液态聚碳硅烷(LPCS)与乙酰丙酮铝[Al(AcAc)3]为原料, 在300, 360和420 ℃下分别合成了固态PACS, 并对合成的PACS样品进行元素组成及结构表征. 表征结果显示, 合成温度明显影响样品的Al, O含量及Si—H键数量. 合成温度升高, Al含量与O含量增大, 但PACS中的Si—H键数量急剧减少, 在360 ℃下合成的样品具有理论Al含量, 而在300和420 ℃下合成的样品的Al含量分别小于和大于理论Al含量. 27Al MAS NMR结果显示, Al与O形成AlO4, AlO5和AlO6 三种配位形式. 反应过程中消耗Si—H键形成Si—O—Al交联结构是PACS数均分子量及多分散系数增加的主要原因.  相似文献   

6.
利用低分子量聚碳硅烷(L-PCS)与乙酰丙酮铝间的热聚合反应,通过调节原料配比和反应条件,合成了不同Al含量,且具有良好可纺性的聚铝碳硅烷(PACS).研究了PACS的分子量分布和分子结构,PACS纤维空气不熔化特点并与PCS纤维进行比较.结果表明,[Al(Ac Ac)3]以-Al(Ac Ac)2悬挂和-Al(Ac Ac)-桥联两种方式接入L-PCS分子结构,PACS分子量呈双峰分布.PACS中Si—H含量和反应活性随Al含量增加而下降,氧化生成的Si—OH难以进一步形成Si—O—Si交联结构.这导致Al含量越高,凝胶点温度越高,凝胶含量随温度升高增加缓慢,同时引入多余氧.通过预氧化与高温处理相结合的方法,将不熔化纤维中氧含量控制在11 wt%以下.高温处理过程中发生自交联:Si—OH间脱水生成Si—O—Si;Si—H与Si—OH或Si—CH3脱氢生成Si—CH2—Si.  相似文献   

7.
采用聚铝碳硅烷和聚碳硅烷共混制备含铝碳化硅的先驱体,并与直接合成得到的聚铝碳硅烷进行了比较.元素分析表明,共混法能够有效控制聚铝碳硅烷中的铝含量,且共混聚铝碳硅烷先驱体Si—H键含量更高.流变性能研究表明,共混获得的聚铝碳硅烷先驱体黏流活化能从255kJ/mol降至200kJ/mol,先驱体的可纺性提高,所以原纤维的平均直径从19μm降至12μm.预氧化后聚铝碳硅烷原纤维经1800℃一步烧成可得到致密的SiC(Al)纤维;XRD研究表明,纤维中的铝起到抑制碳化硅晶粒长大的作用.  相似文献   

8.
采用聚硅碳硅烷(PSCS)与乙酰丙酮铝反应,合成出聚铝碳硅烷(PACS)陶瓷先驱体聚合物.经熔融纺丝、空气不熔化、烧成与高温烧结等工艺, 制备性能优异的耐高温碳化硅纤维SiC(Al).经29Si MAS NMR、 XRD、 Raman谱、AES与SEM等一系列分析表明,该纤维的化学组成和结构与普通碳化硅纤维显著不同,具有近化学计量比组成,氧、游离碳以及SixCyOz相的含量大大低于普通碳化硅纤维,这是其高温稳定的主要原因.在制备过程中铝作为烧结助剂起到了使纤维致密化与抑制晶粒快速增长的作用.  相似文献   

9.
利用热重分析仪(TGA)对预氧化聚铝碳硅烷(PACS)纤维进行了热动力学研究, 用改良的Coats-Redfern法计算了动力学参数, 用Doyle法计算了理论失重值, 并根据FT-IR, XRD和SEM对其热分解的机理进行了分析. 结果表明, 在热分解反应的主要阶段, 预氧化纤维的反应活化能低于PACS纤维, 氧的引入有利于纤维的热分解; 快速升温有利于预氧化PACS纤维的热分解. 在初始分解阶段, 主要为低分子量的PACS和H2O的逸出, 同时≡Si—H键之间以及≡Si—H与≡Si—CH3键发生了脱氢、脱CH4反应, 从而导致交联程度的增加; 随热分解温度进一步的提高, 分子的有机侧基急剧热解, 分解产物从有机物转变为存在部分微晶的无机结构; 热分解温度继续提高, 纤维结构进一步完善, 1300 ℃左右, β-SiC晶粒大小约为2~4 nm左右, 纤维具有较好的性能.  相似文献   

10.
聚铝碳硅烷不熔化纤维中氧含量的调节   总被引:1,自引:0,他引:1  
氧含量是SiAlCO纤维在1700℃以上烧结致密化,并得到近化学计量比元素组成的关键因素,而氧元素主要来源于前驱体聚铝碳硅烷(PACS)纤维的不熔化过程.本文采用一种新的不熔化方法,以预氧化-热交联的方式对PACS纤维进行不熔化处理,实现了热解后所得SiAlCO纤维中氧含量在10%~13%(质量分数)范围内可调节.为保证PACS纤维在热交联过程中不熔融,其最低预氧化条件为190℃下保温4h,对应氧引入量为7.87%,预氧化纤维在惰性气氛下450℃保温2h,可实现不熔化.通过凝胶液相色谱(GPC)、红外光谱(IR)及热重-质谱联用(TG-MS)等方法研究预氧化和热交联过程,结果表明,预氧化过程主要是Si—H氧化生成Si—OH,部分Si—OH相互缩聚,在分子间形成Si—O—Si,使PACS数均分子量提高.热交联分为2个阶段,300℃以下主要是残留的Si—OH之间形成Si—O—Si交联结构;300~450℃主要发生Si—H与Si—CH3之间脱H2的缩聚反应,形成Si—CH2—Si交联结构.  相似文献   

11.
以有机金属聚合物聚铝碳硅烷为原料, 利用先驱体转化法制备出连续SiC(Al)纤维. 采用一系列分析测试对纤维的组成、结构以及耐超高温性能进行了表征, 通过与Nicalon纤维的比较, 对连续SiC(Al)纤维的耐超高温机理进行了研究. 结果表明, 连续SiC(Al)纤维具有优异的耐超高温性能,在1800 ℃氩气中处理1 h后, 纤维的强度保留率为80%左右; 元素分析和27Al MAS核磁共振等分析表明, 连续SiC(Al)纤维为近化学计量比的SiC纤维, 纤维中微量的铝元素以Al—O和Al—C键两种形式存在; 在超高温条件下, 两种不同存在形式的铝均能够抑制纤维中晶粒的长大. 纤维具有近化学计量比的组成和铝元素在高温条件下对于晶粒长大的抑制, 是连续SiC(Al)纤维具有优异耐超高温性能的原因.  相似文献   

12.
毛仙鹤  宋永才 《高分子学报》2007,(12):1141-1148
以聚二甲基硅烷裂解制备的液态聚硅烷为原料,添加引发剂过氧化二苯甲酰合成聚碳硅烷,使液态聚硅烷合成聚碳硅烷的产率提高了20%~25%.利用FTIR和GPC对反应过程进行跟踪分析,利用元素分析,1H-NMR,13C-NMR,TG-DTA和XRD对产物的组成结构和性能进行了表征,提出了过氧化二苯甲酰对液态聚硅烷合成聚碳硅烷的促进反应机理.结果表明,过氧化二苯甲酰受热分解形成自由基,促进了液态聚硅烷中的Si—Si键断裂重排,同时也引发了小分子硅碳烷中的Si—H和Si—CH3键断裂生成Si—CH2—Si结构,使聚碳硅烷分子量长大,产率提高.同时过氧化二苯甲酰分解产生的苯基和苯甲酰氧基会作为端基或侧基引入到聚碳硅烷分子中,引起产物C、O含量的少许增加.但对聚碳硅烷高温烧结后的陶瓷收率没有显著影响.  相似文献   

13.
以聚铝碳硅烷(PACS)为先驱体, 采用先驱体转化技术制备出耐超高温的连续SiC纤维. 研究了制备过程中纤维结构和取向的演变及其对纤维性能的影响. 研究结果表明, 耐超高温连续SiC纤维制备过程中纤维结构的演变随温度变化分为分子间交联(≤600 ℃)、基本无机化(600—800 ℃)、完全无机化(800—1300 ℃)和结晶重排(1300—1800 ℃) 四个阶段; 纤维的取向随着结构的演变而改变, 连续PACS纤维沿轴向具有的微弱取向, 经热分解后演变到1300 ℃的产物中, 1300 ℃后随着结晶重排的发生, 纤维由各向异性转变为各向同性; 结构和取向的转变对于纤维性能具有很大的影响.  相似文献   

14.
Si-Zr-C-O纤维的耐高温抗氧化性能研究   总被引:1,自引:0,他引:1  
以聚硅碳硅烷(PSCS)与乙酰丙酮锆为原料合成聚锆碳硅烷(PZCS),采用先驱体转化法制备了Si-Zr-C-O纤维.通过元素分析、扫描电镜(SEM)、X射线衍射(XRD)和俄歇电子能谱(AES)等分析测试手段研究了Si-Zr-C-O纤维的组成结构及其耐高温抗氧化性能.结果表明:Si-Zr-C-O纤维的元素组成为SiC1.24HxO0.56Zr0.0129,平均强度2.5GPa,平均直径11μm,纤维表面光滑平坦,没出现孔洞、裂纹、沟槽等缺陷,直径均匀.该纤维耐超高温性能良好,在1450和1600℃处理后,强度保留率分别为72%和36%,1800℃处理后Si-Zr-C-O纤维的化学式为SiC0.99HxO0.1Zry,纤维氧含量大大降低;纤维抗氧化性能良好,空气中1000℃热处理20h后,强度保留率为71.2%,热处理100h后,强度保留率为50%.  相似文献   

15.
反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响   总被引:4,自引:0,他引:4  
以聚二甲基硅烷(PDMS)为原料,在高压釜内高温高压合成了聚碳硅烷(PCS)先驱体.研究了反应温度对合成的PCS的Si—H键含量、支化度、Si—Si键含量、分子量及其分布、软化点及产率的影响.研究表明,随着反应温度的提高,分子量及软化点均明显增加,分子量分布变宽,支化度升高,Si—Si键含量明显降低.当反应温度低于460℃时,Si—H键含量及产率随反应温度的升高逐渐升高,当反应温度高于460℃时,由于分子间的缩合及热交联二者逐渐降低.在反应过程中PDMS首先转化为小分子量的PCS,然后是小分子PCS分子间发生脱氢及少量脱甲烷缩合使分子量长大.当反应温度高于450℃时,PCS分子量分布出现中分子量峰,Si—Si键含量较低,在室温空气中比较稳定.  相似文献   

16.
聚碳硅氮烷是一种新型含硅有机金属聚合物,其主链由硅氮碳连接而成,侧链为有机基团;与其它含硅聚合物(聚硅氮烷、聚碳硅烷等)类似,聚碳硅氮烷适于用做力学性能极佳且耐高温氧化的氮化硅(Si3N4)和氮化硅/碳化硅(Si3N4/SiC)复相陶瓷的前驱体.[1]超支化聚合物具有溶解性好、粘度低  相似文献   

17.
连续碳化硅纤维的原丝——聚碳硅烷纤维的成形是SiC纤维制备的关键技术之一,原丝品质的好坏对SiC纤维性能有重要影响。本文分析了聚碳硅烷和聚碳硅烷纤维的特点,并对聚碳硅烷的基本流变性质、粘弹性、聚碳硅烷的可纺性、纤维断裂机理和纺丝稳定性等研究进行了介绍。  相似文献   

18.
基于液态聚碳硅烷的聚铝碳硅烷的合成与表征   总被引:1,自引:0,他引:1  
采用液态聚碳硅烷与乙酰丙酮铝在常压下反应合成了具有不同铝含量的聚铝碳硅烷(PACS), 由于不需要循环回流过程, 因此该方法简单方便, 安全性高. 在与合成聚铝碳硅烷相同的条件下, 对单纯的液态聚碳硅烷原料进行保温处理, 所得产物的分析表征结果显示, 该原料在反应条件下基本保持稳定, 不会自聚或者裂解. 不同铝含量的聚铝碳硅烷的元素分析结果表明, 随着乙酰丙酮铝加入量的增加, 聚铝碳硅烷中的铝含量增加, 同时氧含量增加, 氢含量减少, 且乙酰丙酮铝中的铝元素几乎全部引入到液态聚碳硅烷中. GPC分析结果显示, 随着铝含量的增大, PACS的数均分子量增大, 分子量分布变宽. 红外光谱和核磁共振波谱分析结果表明, 液态聚碳硅烷与乙酰丙酮铝的反应主要以消耗Si-H键的方式进行, 铝元素以AlO4, AlO5和AlO6 3种配位形式存在, 同时形成Si-O-Al交联键, 使得聚铝碳硅烷的分子量增大, 分子量分布变宽.  相似文献   

19.
聚碳硅烷纤维的热交联研究   总被引:8,自引:0,他引:8  
在无氧的情况下对PCS纤维进行热交联时 ,发现在热交联前纤维必须有一个最低的预氧化程度 ,然后通过PCS纤维自身热交联实现预氧化 ,这样可降低纤维 1 3的氧含量 ,制备性能优良的SiC纤维 .研究了低预氧化PCS纤维热交联反应的机理 ,并对引入氧在热交联中所起的作用进行了分析 .研究结果表明 ,PCS纤维能够进行热交联处理所需的最低预氧化程度为纤维氧增重 9% ;热交联的过程主要是消耗了PCS中的SiH键 ,生成SiCH2 Si键 ,形成分子间交联 ;引入的少量氧预氧化时生成SiOH键 ,热交联中发生脱水反应生成SiOSi键 ,在纤维表层形成保护层 ,保证了纤维的热交联顺利进行  相似文献   

20.
聚碳硅烷的高温高压生成机理研究   总被引:1,自引:0,他引:1  
分别以聚二甲基硅烷(PDMS)、液态聚硅烷(LPS)及PDMS裂解剩余物(LPCS)为原料,在不同的温度下高压合成聚碳硅烷(PCS),采用红外、紫外、核磁共振、分子量及其分布等分析PCS的组成、结构随温度的变化.同时,采用改变减压蒸馏温度的办法,对PCS进行分级,收集在不同蒸馏温度下的馏分,通过对一系列馏分进行了IR分析,以此推测PCS的转化过程.研究表明,PCS的生成过程是随着温度的升高,PDMS、LPS中键能较低的Si—Si键断裂,逐渐转变成为键能较高的Si—C键,转化为低分子的碳硅烷;随着温度的升高,碳硅烷分子间发生脱氢、脱甲烷缩合反应使产物的分子量逐渐长大,生成PCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号