首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
2.
Ag2Cu2O3 films were deposited on glass substrates by reactive sputtering of a composite silver-copper target. The deposited films were annealed in air at 100, 200 and 300 °C. The structure of the films was studied using X-ray diffraction (XRD), their surface morphology was characterised using scanning electron microscopy (SEM) and their electrical resistivity at room temperature was measured using the four point probe method. The 100 °C annealing did not modify either the film structure or the film morphology. On the other hand, Ag2Cu2O3 films were partially decomposed into Ag and CuO after a 200 °C annealing. The decomposition was complete for a 300 °C annealing. The evolution of the film surface morphology as a function of the annealing temperature was discussed in connection to the evolution of the molar volume of the phases constituting the films.  相似文献   

3.
AlNxOy thin films were produced by DC reactive magnetron sputtering, using an atmosphere of argon and a reactive gas mixture of nitrogen and oxygen, for a wide range of partial pressures of reactive gas. During the deposition, the discharge current was kept constant and the discharge parameters were monitored. The deposition rate, chemical composition, morphology, structure and electrical resistivity of the coatings are strongly correlated with discharge parameters. Varying the reactive gas mixture partial pressure, the film properties change gradually from metallic-like films, for low reactive gas partial pressures, to stoichiometric amorphous Al2O3 insulator films, at high pressures. For intermediate reactive gas pressures, sub-stoichiometric AlNxOy films were obtained, with the electrical resistivity of the films increasing with the non-metallic/metallic ratio.  相似文献   

4.
Cr1−xAlxC films were deposited on high-speed steel by RF reactive magnetron sputtering. In this study, we aimed to identify the effect of the Al content on the properties of Cr1−xAlxC films. We found that Cr1−xAlxC films exhibited a fine columnar grain microstructure with some special characteristics, such as high hardness of Hv 1426, a low friction coefficient of 0.29, and a large contact angle of 90° for x = 0.18. Furthermore, an increase in Al content resulted in a decrease in film hardness and an increase in contact angle. Moreover, on annealing at 923 K, the mechanical properties of the films improved and a dense protective film of complex Cr2O3 and Al2O3 oxides was formed on the surface for better wear resistance, which will ultimately increase the lifetime of the high-speed steel substrate.  相似文献   

5.
Metallic oxynitrides have attracted the attention of several researchers in the last decade due to their versatile properties. Through the addition of a small amount of oxygen into a transition metal nitride film, the material's bonding states between ionic and covalent types can be tailored, thus opening a wide range of electrical, optical, mechanical and tribological responses. Among the oxynitrides, chromium oxynitride (CrNxOy) has many interesting applications in different technological fields. In the present work the electrical behavior of CrNxOy thin films, deposited by DC reactive magnetron sputtering, were investigated and correlated with their compositional and structural properties. The reactive gas flow, gas pressure, and target potential were monitored during the deposition in order to control the chemical composition, which depend strongly on reactive sputtering process. Depending on the particular deposition parameters that were selected, it was possible to identify three types of films with different growth conditions and physical properties. The electrical resistivity of the films, measured at room temperature, was found to depend strongly on the chemical composition of the samples.  相似文献   

6.
We report on the growth of cubic spinel ZnCo2O4 thin films by reactive magnetron sputtering and bipolarity of their conduction type by tuning of oxygen partial pressure ratio in the sputtering gas mixture. Crystal structure of zinc cobalt oxide films sputtered in an oxygen partial pressure ratio of 90% was found to change from wurtzite Zn1−xCoxO to spinel ZnCo2O4 with an increase of the sputtering power ratio between the Co and Zn metal targets, DCo/DZn, from 0.1 to 2.2. For a fixed DCo/DZn of 2.0 yielding single-phase spinel ZnCo2O4 films, the conduction type was found to be dependent on the oxygen partial pressure ratio: n-type and p-type for the oxygen partial pressure ratio below ∼70% and above ∼85%, respectively. The electron and hole concentrations for the ZnCo2O4 films at 300 K were as high as 1.37×1020 and 2.81×1020 cm−3, respectively, with a mobility of more than 0.2 cm2/V s and a conductivity of more than 1.8 S cm−1.  相似文献   

7.
Titanium oxynitride (TiNxOy) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiNxOy films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm2 to 7 W/cm2. The maximum deposition rate occurs, as the substrate bias is −40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiNxOy films deposited at power densities above 4 W/cm2 show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiNxOy films reach values as low as 0.98 g/m2-day-atm and 0.60 cm3/m2-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al2O3 barrier films. Therefore, TiNxOy films are potential candidates to be used as a gas permeation barrier for PET substrate.  相似文献   

8.
Ga2(1−x)In2xO3 thin films with different indium content x [In/(Ga + In) atomic ratio] were prepared on α-Al2O3 (0 0 0 1) substrates by the metal organic chemical vapor deposition (MOCVD). The structural and optical properties of the Ga2(1−x)In2xO3 films were investigated in detail. Microstructure analysis revealed that the film deposited with composition x = 0.2 was polycrystalline structure and the sample prepared with x up to 0.8 exhibited single crystalline structure of In2O3. The optical band gap of the films varied with increasing Ga content from 3.72 to 4.58 eV. The average transmittance for the films in the visible range was over 90%.  相似文献   

9.
Molybdenum oxide (Mo1–xOx) films were prepared by reactive rf sputtering of a Mo target in O2/Ar plasma. The dependence of film properties on various sputtering parameters is investigated. The atomic percentage of oxygen (x) in the Mo1–xOx films decreases with sputtering power and increases with the partial pressure of oxygen. Mo1–xOx films that exhibit metallic conductivities can be obtained over a wide range of sputtering conditions. The intrinsic film stress of conducting Mo1–xOx is compressive. Such M1–xOx films were shown by backscattering spectrometry to be excellent diffusion barriers between Al and Si up to 600 °C annealing for 30 min.  相似文献   

10.
Zr-Ti and Hf-Ti composite nitrates were successfully developed as single-source precursors for the chemical vapor deposition (CVD) of ZrxTi1−xO2 and HfxTi1−xO2 thin films. The Zr-Ti nitrate can be assumed as a solid solution of the individual Zr and Ti nitrates, and the Zr/Ti molar ratio in the deposited ZrxTi1−xO2 films is consistent with that in the precursor. The Hf-Ti nitrate appears to be a mixture of the Hf and Ti nitrates and the composition of the deposited HfxTi1−xO2 films depends remarkably on the heating time of precursor. Both ZrxTi1−xO2 and HfxTi1−xO2 films exhibit trade-off properties between band gap and dielectric constant. The obtained results suggest that ZrxTi1−xO2 and HfxTi1−xO2 films are promising candidates for gate dielectric application to improve the scalability and reduce the leakage current of the future complementary metal-oxide-semiconductor (CMOS) devices.  相似文献   

11.
This paper presents a study of bulk samples synthesized of the Ag1−xCuxInSe2 semiconductor system. Structural, thermal and electrical properties, as a function of the nominal composition (Cu content) x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 were studied. The influence of x on parameters such as melting temperature, solid phase transition temperature, lattice parameters, bond lengths, crystallite size t (coherent domain), electrical resistivity, electrical mobility and majority carrier concentration was analyzed. The electrical parameters are analyzed at room temperature. In general, it is observed that the properties of the Ag1−xCuxInSe2 system for x≤0.4 are dominated by n-AgInSe2, while for x>0.4, these are in the domain of p-CuInSe2. The crystallite size t in the whole composition range (x) is of the order of the nanoparticles. Secondary phases (CuSe, Ag2Se and InSe) in small proportion were identified by XRD and DTA.  相似文献   

12.
TixSi1−xO2 compound thin-film systems were deposited by reactive RF magnetron co-sputtering technique. The effect of Ti concentration on the hydrophilicity of TixSi1−xO2 compound thin films was studied and it was shown that the films with Ti0.6Si0.4O2 composition possess the best hydrophilic property among all the grown samples. Surface ratio and average roughness of the thin films were measured by atomic force microscopy (AFM). Surface chemical states and stoichiometry of the films were determined by X-ray photoelectron spectroscopy (XPS). In addition, XPS revealed that the amount of Ti-O-Si bonds in nanometer depth from the surface of the Ti0.6Si0.4O2 films was the maximum, which resulted in the most stable superhydrophilic property. According to XRD data analysis for the pure TiO2 films, the polycrystalline anatase phase was formed with an average grain size of about 15 nm. Moreover, amorphous phase was also formed for the TixSi1−xO2 compound systems due to presence of silicon in the films. Finally, optical properties of the films such as transmission, reflection and band gap energy were investigated using UV-vis spectrophotometry. It was found that the transmittance of the films was decreased with increasing Ti concentration in the films.  相似文献   

13.
Silver doped indium oxide (In2−x Agx O3−y) thin films have been prepared on glass and silicon substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target of pure indium and silver (80: 20 atomic %. The magnetron power (and hence the metal atom sputter flux) is varied in the range 40-80 W. The energy dispersive analysis of X-ray (EDAX) results show that the silver content in the film decreases with increasing magnetron power. The grain size of these films is of the order of 100 nm. The resistivity of these films is in the range 10−2-10−3 Ω cm. The work function of the silver-indium oxide films (by Kelvin Probe) are in the range: 4.64-4.55 eV. The refractive index of these films (at 632.8 nm) varies in the range: 1.141-1.195. The optical band gap of indium oxide (3.75 eV) shrinks with silver doping. Calculations of the partial ionic charge (by Sanderson's theory) show that silver doping in indium oxide thin films enhance the ionicity.  相似文献   

14.
Physical vapor deposition techniques such as sputtering and laser ablation – which are very commonly used in thin film technology – appear to hold much promise for the synthesis of nanocrystalline thin films as well as loosely aggregated nanoparticles. We present a systematic study of the process parameters that facilitate the growth of nanocrystalline metals and oxides. The systems studied include TiO2, ZnO, γ-Al2O3, Cu2O, Ag and Cu. The mean particle size and crystallographic orientation are influenced mainly by the sputtering power, the substrate temperature and the nature, pressure and flow rate of the sputtering gas. In general, nanocrystalline thin films were formed at or close to 300 K, while loosely adhering nanoparticles were deposited at lower temperatures. Received: 31 October 2000 / Accepted: 9 January 2001 / Published online: 26 April 2001  相似文献   

15.
The preparation of ZnSn-substituted barium ferrite films by sputtering deposition was studied. The as-sputtered films were amorphous, and annealing at a minimum of 750 °C was required to crystallize the films, based on the X-ray diffraction analysis and the magnetic measurements. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopic microanalysis confirmed that the films were single phase with the composition BaZnxSnxFe12−2xO19, x=0.2−0.3, and their thicknesses were 0.4-1.0 μm when annealed at 750-900 °C. Atomic and magnetic force microscopy studies showed no significant grain growth upon annealing and that the films consisted of single-domain grains forming interaction-cluster-type domains. The natural ferromagnetic resonance frequency was determined at around 4 GHz, together with substantial magnetic losses that make these films promising candidates for microwave absorbers.  相似文献   

16.
Nitrogen doping of silver oxide(AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity.In this work,a series of AgxO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios(FRs) of nitrogen to O2.Evolutions of the structure,the reflectivity,and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry,respectively.The specular transmissivity and the specular reflectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film.The nitrogen does not play the role of an acceptor dopant in the film deposition.  相似文献   

17.
This paper reports that a series of silver oxide (AgxO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 oC and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag2O) to cubic single-phased (Ag2O), and to biphased (Ag2O + AgO) structure. Notably, the cubic single-phased Ag2O film is deposited at the SP = 105 W and an AgO phase with <220> orientation discerned in the AgxO films deposited using the SP > 105 W. The transmissivity and reflectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.  相似文献   

18.
Thin films of CuxS (x=1.0, 1.76, and 2.0) were grown by solution growth technique (SGT). The deposition parameters such as pH of solution, deposition time, and deposition temperature were optimized. The deposited films were annealed in Ar atmosphere at 250 °C. The changes in structural and optical transport phenomenon of annealed films have been studied. The surface morphology and composition of films were studied by SEM micrographs and EDAX analysis, respectively, and the surface roughness was calculated by atomic force microscopy (AFM). The XRD study showed the polycrystalline nature of annealed film. The lattice parameters of different phases of the material were calculated from the XRD pattern. The absorption coefficient varies in the range of 1×105-6×105 cm−1. The optical bandgaps of CuS, Cu1.76S, and Cu2S are 1.72, 2.11, and 2.48 eV, respectively.  相似文献   

19.
HfO2 films prepared on glass substrates by dc reactive magnetron sputtering in an Ar + O2 atmosphere are investigated. The films are polycrystallized with a pure monoclinic phase, and the crystallization strongly relates to the technology environment. Charged particle bombardment mainly caused by negative oxygen ions during sputtering on the films results in rougher surface morphology and worse crystalline property. Influence of sputtering pressure, substrate temperature and Ar:O2 flow ratio is studied. The main orientations of the films are (−1 1 1) and (1 1 1). The (−1 1 1) orientation is stable, but (1 1 1) orientation is very sensitive to the sputtering condition, and it can be suppressed effectively by introducing charged particle bombardment, lowing sputtering pressure and increasing oxygen concentration.  相似文献   

20.
Zr-N diffusion barriers were deposited on the Si substrates by rf reactive magnetron sputtering under various substrate bias voltages. Cu films were subsequently sputtered onto the Zr-N films by dc pulse magnetron sputtering without breaking vacuum. The Cu/Zr-N/Si specimens were then annealed up to 650 °C in N2 ambient for an hour. The effects of deposition bias on growth rate, film resistivity, microstructure, and diffusion barrier properties of Zr-N films were investigated. An increase in negative substrate bias resulted in a decrease in deposition rate together with a decrease in resistivity. It was found that the sheet resistances of Cu/Zr-N(−200 V)/Si contact system were lower than those of Cu/Zr-N(−50 V)/Si specimens after annealing at 650 °C. Cu/Zr-N(−200 V)/Si contact systems showed better thermal stability so that the Cu3Si phase could not be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号