首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 727 毫秒
1.
ZSM-5上甲醇制烯烃反应中低碳烯烃的成因   总被引:6,自引:0,他引:6  
考察和比较了573—823K范围内HZSM-5上甲醇、C_2—C_(12)直链烯烃(除C_7~=为庚烯-2外,其它均为α-烯烃),以及C_6—C_(12)正构烷烃的转化产物分布,用TPSR技术追踪了甲醇转化反应的历程。结果表明甲醇转化过程中较长链烯烃(或其前体)的裂解对最终产物分布有很大影响。高于723K时,低碳烯烃,特别是乙烯,主要源于这些较长链烯烃的次级裂解。且温度愈高,愈有利于生成乙烯。甲烷含量在623K附近有一极大值。证实甲烷为甲醇转化的第一个烃类产物,极化了的表面(+)CH_3是产生初始C-C键的活性中间物种。讨论了甲醇转化的机理。  相似文献   

2.
从煤、生物质或天然气出发经甲醇制烯烃正在成为最重要的非石油路线低碳烯烃和液态燃料的生产途径。基于SAPO-34和HZSM-5催化剂,甲醇制低碳烯烃(MTO),甲醇制丙烯(MTP)和甲醇制汽油(MTG)已经实现了工业化。与此同时,甲醇制烯烃反应机理也一直是学术界和工业界研究的焦点,然而由于甲醇转化机理十分复杂,且往往受多种因素的影响,使得机理研究工作至今未给出明确详尽的结论。据文献报道,在具有较大笼或交叉孔道结构的SAPO-34, SSZ-13和Hβ催化剂上,甲醇转化主要是通过烃池机理进行。烃池物种包括多甲苯及其对应的质子化产物。随着HZSM-5上甲醇转化双循环机理的提出,近期人们开始关注一维孔道分子筛上的甲醇转化反应,试图通过抑制芳烃循环使得甲醇转化主要通过烯烃甲基化裂解机理进行,发现在具有一维十元环孔道结构的HZSM-22分子筛上甲醇转化能够达到这一效果,产物主要以C3+烯烃为主,乙烯的生成较少。该催化体系的发现对于甲醇制丙烯过程的开发具有重要的意义,然而除了分子筛的拓扑结构,催化剂的酸强度对甲醇转化也具有重要的影响,值得深入研究。为此,本文采用同位素切换/共进料实验,色质谱(GC-MS),热分析(TGA)以及原位红外实验(in situ FTIR)等技术系统研究两种一维十元环结构分子筛HZSM-22和SAPO-11酸强度对于甲醇转化和催化剂失活机理的影响,为开发新型催化剂和优化反应条件以调节产物选择性提供理论指导。
  12C/13C-甲醇切换实验表明, HZSM-22和SAPO-11催化的甲醇转化机理主要是烯烃循环,然而由于酸强度的差异导致两种分子筛上甲基化反应和裂解反应对烯烃最终产物分布贡献不同。对于HZSM-22分子筛,催化活性较高,当反应温度低于400 oC时,产物以C5+高碳烃为主,随着反应温度的升高,产物以C2–C4低碳烃为主,且乙烯的增长速率高于丙烯;对于SAPO-11分子筛,催化活性较低,无论反应温度高或低,甲醇转化产物均以C5+高碳烃为主。以上结果表明,催化剂的活性与酸强度相关,且随着反应温度的升高,在酸性较强的HZSM-22分子筛上高碳烃的裂解活性要远高于酸性较弱的SAPO-11分子筛。该推论得到13C-甲醇和12C-1-丁烯共进料实验数据的支持。失活催化剂的GC-MS和TG结果显示,催化剂的失活与酸强度和反应温度密切相关:对于HZSM-22分子筛,较低温度下(<450 oC)催化剂的失活源于稠环化合物的生成和积累,高温下(>450 oC)的失活是源于分子筛表面石墨碳的沉积;对于SAPO-11分子筛,低温下(<400 oC)的失活源于稠环芳烃的生成和积累,高温下(>400 oC)的失活是源于分子筛表面石墨碳的沉积。此外,由于酸强度的差异,与SAPO-11相比,低温下积碳物种更倾向于在HZSM-22分子筛孔口快速形成。这也是HZSM-22分子筛在低温下快速失活的原因。为了进一步证明该结论,本文采用原位红外装置对HZSM-22催化甲醇转化过程中的Br?nsted酸和芳烃物种进行了连续监测。结果显示,在最初的15 min内归属为Br?nsted酸的峰(3585 cm–1)有明显的下降,但随着反应时间的延长, Br?nsted酸的量不再发生变化;与此同时,归属为芳烃物种的峰(3136 cm–1)增加到一定程度后随着反应时间的延长也几乎不再增加。这进一步说明了低温下HZSM-22分子筛的失活是由非活性芳烃积碳物种堵塞孔口造成的。  相似文献   

3.
甲醇在HZSM-5上转化为烃类的催化反应机理   总被引:4,自引:1,他引:3  
本文提供一些新的实验事实以澄清目前存在的甲醇转化机理研究中的一些问题。文中利用TPSR和GC-MS技术对甲醇和烃类在HZSM-5上的吸附和反应进行了探讨,主要结果有: 1.甲醇脱水生成二甲醚主要是在L酸中心上进行的,而其它烃类的转化是在B酸中心上进行的。2.C-C键是由类醚物吸附态通过水的消除反应形成的。3.烯烃是形成芳烃的中间体,丙烯是较之乙烯更重要的中间体。  相似文献   

4.
从煤、生物质或天然气出发经甲醇制烯烃正在成为最重要的非石油路线低碳烯烃和液态燃料的生产途径.基于SAPO-34和HZSM-5催化剂,甲醇制低碳烯烃(MTO),甲醇制丙烯(MTP)和甲醇制汽油(MTG)已经实现了工业化.与此同时,甲醇制烯烃反应机理也一直是学术界和工业界研究的焦点,然而由于甲醇转化机理十分复杂,且往往受多种因素的影响,使得机理研究工作至今未给出明确详尽的结论.据文献报道,在具有较大笼或交叉孔道结构的SAPO-34,SSZ-13和Hβ催化剂上,甲醇转化主要是通过烃池机理进行.烃池物种包括多甲苯及其对应的质子化产物.随着HZSM-5上甲醇转化双循环机理的提出,近期人们开始关注一维孔道分子筛上的甲醇转化反应,试图通过抑制芳烃循环使得甲醇转化主要通过烯烃甲基化裂解机理进行,发现在具有一维十元环孔道结构的HZSM-22分子筛上甲醇转化能够达到这一效果,产物主要以C3+烯烃为主,乙烯的生成较少.该催化体系的发现对于甲醇制丙烯过程的开发具有重要的意义,然而除了分子筛的拓扑结构,催化剂的酸强度对甲醇转化也具有重要的影响,值得深入研究.为此,本文采用同位素切换/共进料实验,色质谱(GC-MS),热分析(TGA)以及原位红外实验(in situ FTIR)等技术系统研究两种一维十元环结构分子筛HZSM-22和SAPO-11酸强度对于甲醇转化和催化剂失活机理的影响,为开发新型催化剂和优化反应条件以调节产物选择性提供理论指导.12C/13C-甲醇切换实验表明,HZSM-22和SAPO-11催化的甲醇转化机理主要是烯烃循环,然而由于酸强度的差异导致两种分子筛上甲基化反应和裂解反应对烯烃最终产物分布贡献不同.对于HZSM-22分子筛,催化活性较高,当反应温度低于400o C时,产物以C5+高碳烃为主,随着反应温度的升高,产物以C2–C4低碳烃为主,且乙烯的增长速率高于丙烯;对于SAPO-11分子筛,催化活性较低,无论反应温度高或低,甲醇转化产物均以C5+高碳烃为主.以上结果表明,催化剂的活性与酸强度相关,且随着反应温度的升高,在酸性较强的HZSM-22分子筛上高碳烃的裂解活性要远高于酸性较弱的SAPO-11分子筛.该推论得到13C-甲醇和12C-1-丁烯共进料实验数据的支持.失活催化剂的GC-MS和TG结果显示,催化剂的失活与酸强度和反应温度密切相关:对于HZSM-22分子筛,较低温度下(450o C)催化剂的失活源于稠环化合物的生成和积累,高温下(450o C)的失活是源于分子筛表面石墨碳的沉积;对于SAPO-11分子筛,低温下(400o C)的失活源于稠环芳烃的生成和积累,高温下(400o C)的失活是源于分子筛表面石墨碳的沉积.此外,由于酸强度的差异,与SAPO-11相比,低温下积碳物种更倾向于在HZSM-22分子筛孔口快速形成.这也是HZSM-22分子筛在低温下快速失活的原因.为了进一步证明该结论,本文采用原位红外装置对HZSM-22催化甲醇转化过程中的Brnsted酸和芳烃物种进行了连续监测.结果显示,在最初的15 min内归属为Brnsted酸的峰(3585 cm–1)有明显的下降,但随着反应时间的延长,Brnsted酸的量不再发生变化;与此同时,归属为芳烃物种的峰(3136 cm–1)增加到一定程度后随着反应时间的延长也几乎不再增加.这进一步说明了低温下HZSM-22分子筛的失活是由非活性芳烃积碳物种堵塞孔口造成的.  相似文献   

5.
用红外光谱法研究了C_6—C_8芳烃在HZSM-5,PHZSM-5及REY催化剂表面上的吸附物种。间二甲苯室温吸附在HZSM-5上几乎见不到表征苯环的C—C键伸缩振动吸收蜂,但出现一条很强的表征对二甲苯苯环C—C键的伸缩振动吸收峰,表明吸附的间二甲苯基本上都转化为对二甲苯。反之,室温吸附在HZSM-5上的对二甲苯也部分地转化为间二甲苯(或邻二甲苯)。吸附在HZSM-5上的邻二甲苯则部分地转化为对二甲苯。REY催化剂上的吸附,也有类似的异构化现象。甲苯室温吸附在PHZSM-5上时,却观察到对二甲苯的吸附物种,表明发生了歧化作用。甲苯室温吸附在预吸附CD_3OD的REY催化剂上发生烷基化生成了对二甲苯。此外,还观测到吸附态的C_6D_6分子的D原子与沸石催化剂表面结构的OH基发生D—H交换作用。苯在HZSM-5,PHZSM-5及REY上吸附时,其结构对称性均有不同程度的降低。  相似文献   

6.
用红外光谱、氘交换及脉冲催化反应综合考察了甲醇与丙烯在HZSM-5型沸石上的吸附及催化转化。发现甲醇在<120℃下抽空活化的HZSM-5上吸附时,在一些强质子酸中心有甲氧基生成,而室温下甲醇是以分子间氢键缔合成多聚物的形式吸附在HZSM-5表面上。丙烯在该沸石上强质子酸中心吸附时,双键立即被打开,生成正碳离子。丙烯芳构化和烷基化等都属正碳离子机理。最后讨论了甲醇在反应条件下于HZSM-5上催化转化成汽油的反应机理。  相似文献   

7.
SAPO-34和SAPO-44分子筛上吸附甲醇的TPSR-MS研究   总被引:5,自引:0,他引:5  
 采用程序升温表面反应-质谱(TPSR-MS)和程序升温脱附(TPD)技术考察了SAPO-34和SAPO-44分子筛表面的酸性与其催化甲醇转化为低碳烯烃性能的关系. 结果表明,SAPO分子筛表面存在两种活性中心,这两种活性中心与分子筛表面不同的酸性中心相对应. 表面吸附的甲醇在不同强度的酸性中心上进行不同的反应,在弱酸中心上主要进行甲醇脱水生成二甲醚的反应,在强酸中心上主要进行二甲醚进一步转化为低碳烯烃的反应. 同时,探讨了SAPO分子筛表面的酸强度对低碳烯烃生成温度的影响.  相似文献   

8.
甲醇转化为低碳烯烃催化剂的选择性,可通过由有机胺(79-2系列)或无机氨(HZ-29系列)合成的中孔ZSM-5沸石以及小孔毛沸石和毛沸石-菱钾沸石(HE-1和HSW)的改性而提高。经P(HZ-29-P)或Mg(79-2-Mg)改性的沸石催化剂相应具有高乙烯或高丙烯及低碳烯烃选择性;经改性后的两类小孔沸石(HE-1-Zn 和SW-2)都得到了高乙烯及丙烯选择性和高C_2~-/C_3~-比。改性前后的沸石催化剂经吸附容量、吸附氨TPD、吸附吡啶IR 等测定结果表明,沸石改性后引起的通道收缩及表面强酸中心数的减少是提高选择性的关键。和H 型的对比,在经改性后的沸石催化剂上结炭量都明显下降,其中以HZ-29-P 结炭最少,且此催化剂能够经受30次以上的再生试验。  相似文献   

9.
制备出NiSAPO-34及NiSAPO-34/HZSM-5催化剂,考察了其对二甲醚催化转化制备低碳烯烃的性能.利用Cu/Zn/Al/HZSM-55u筛选出的2%NiSAPO—34/HZSM-5催化剂进行生物质气经由二甲醚两步法制备低碳烯烃的实验,结果表明在SAPO-34上添2H2%的Ni不改变其结构,但降低了酸中心数量,并生成了较强的酸中心.添加少量具有稳定酸中心的HZSM-5,该催化剂的活性提高到3h以上,反应进行2h获得了最高的低碳烯烃选择性为90.8%.当把该催化剂应用到两步催化转化过程的第二个反应器中,其高催化活性可达5h以上.当以低氢碳比生物质气(H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89)作为原料时,经两步转化,低碳烯烃的收率达到84.6g/m^3syngas.  相似文献   

10.
以具有酸性特性的HZSM-5分子筛为载体,结合金属本身具有的羰基化活性,可以更好的提高羰基化反应效率。采用负压沉积沉淀法对HZSM-5催化剂进行Pt、Pd、Cu、Au、Zn改性,制备不同酸度的催化剂。利用X射线衍射、NH3程序升温脱附、吡啶吸附FTIR、N2吸附-脱附和X射线荧光分析研究了不同金属对催化剂物理化学性质及不同负载型HZSM-5催化剂对甲醇羰基化产物的分布和产率的影响。结果表明,不同金属的引入对HZSM-5催化剂的比表面积、孔径和孔体积影响较小,但明显地改变了催化剂表面的酸强度。Pt、Au、Zn和Cu改性后的催化剂更有利于甲醇羰基化反应的进行,其中Cu/HZSM-5催化剂在400℃的甲醇转化率高达90.2%,比HZSM-5催化剂的甲醇转化率高12%,但目标产物的选择性比Pt/HZSM-5及Au/HZSM-5的低。总的来看,金属的引入改变了催化剂表面Brønsted酸(B酸)和Lewis酸(L酸)中心的数量,甲醇的转化率随总酸量的增加而增加,催化剂表面B酸与L酸的比例在0.3~0.5时,催化剂表现出更好的羰基化作用。  相似文献   

11.
HZSM-5分子筛已被广泛用作催化剂,其中之一是把甲醇转化成汽油及各种低级烯烃.甲醇分子在这种分子筛表面的吸附和转化机理已成为人们重视研究的问题. 本文作者曾用热脱附谱方法探测和讨论了HZSM-5表面酸性(包括种类和数目)、甲醇分子在表面的吸附位置和反应产物等现象,对催化机理作了一定的解释.限于篇幅,本文只讨论前两个问题.  相似文献   

12.
(Fe)ZSM-5的水热稳定性及转化甲醇为低碳烯烃的反应性能   总被引:7,自引:0,他引:7  
用XRD,ESR,Mossbauer谱,TPD,IR及连续反应等技术,考察了水热处理对杂原子(Fe)ZSM-5的结构稳定性、表面酸性和对甲醇转化为低碳烯烃反应性能的影响。在水蒸汽的影响下,骨架铁易向分子筛表面迁移而使分子筛骨架向silicalite-1转化。(Fe)ZSM-5的表面酸性明显弱于(Al)ZSM-5,而且酸中心以L酸为主,随着水热处理温度的提高,B酸下降程度大于L酸。另外,随着水热处理温度的提高,甲醇转化的活性降低。  相似文献   

13.
随着经济发展和能源需求不断增加,资源合理配置显得尤为重要。以天然气为原料的甲醇制烯烃(MTO)技术的发展,为弥合日益扩大的低碳烯烃供需矛盾提供了一条可替代传统石油化工路线、有广阔应用前景的合成路径。酸性调节对MTO催化剂的催化性能及积炭问题的解决至关重要。本研究通过改变Ca含量调节催化剂的酸性并测定系列Ca改性HZSM-5催化剂(9≤Ca/Al≤54)的甲醇转化率和低碳烯烃选择性以及催化剂稳定性,研究了Ca含量对150 nm Si/Al比为230的HZSM-5纳米颗粒催化甲醇制烯烃性能及积炭生成的影响。利用阳离子引入策略调节Lewis酸和Bronsted酸的比例及酸强度,研究了不同Ca离子含量对HZSM-5催化剂催化MTO转化的影响。首先,合成NaZSM-5纳米颗粒并通过离子交换法制备HZSM-5分子筛,然后采用浸渍法制备不同Ca/Al比的Ca-HZSM-5催化剂。其次,分别在390、440以及490℃温度条件及不同的空速条件下对常压固定床中系列Ca改性HZSM-5催化剂进行催化性能测试。在490℃的温度条件及空速为9 h-1条件下对HZSM-5催化剂和Ca27-HZSM-5催化剂进行了约100 h的稳定性测试。采用配备HP-Plot Q色谱柱(30 m×0.53 mm×40μm)、FID检测器的气相色谱仪(Agilent 7890)在线分析气相产物并通过室温冷凝对液相产物进行离线分析。最后,利用XRD、BET、FESEM、IR、NH3-TPD、TGA手段对Ca改性HZSM-5催化剂进行表征,探究催化剂的构成和催化剂催化性能以及催化剂积炭失活之间的关系。从该系列Ca-HZSM-5催化剂催化性能结果结合系列表征结果可以看出,Ca含量对甲醇制烯烃反应及积炭生成影响结果如下:(1)通过调节Ca含量,可获得催化MTO反应性能最佳的Ca27-HZSM-5 (Ca/Al=27)催化剂,该催化剂在490℃反应条件下的乙烯产率为0.11,丙烯产率为0.14。通过FT-IR、吡啶红外吸附以及NH3-TPD结果分析可得,Ca27-HZSM-5催化剂在该类Ca改性催化剂中具有最多的易接触Lewis酸性位点,同时Lewis酸在总酸位点中占比最大并且酸强度也有所增强。(2)通过热重分析及反应后催化剂颜色变化可以推断Ca掺杂的HZSM-5催化剂可显著降低催化剂上积炭的生成。(3)Ca掺杂HZSM-5催化剂上其低碳烯烃产率在研究温度范围内不受温度变化的影响并且该Ca掺杂HZSM-5催化剂相较于未掺杂的HZSM-5催化剂乙烯和丙烯的产率得到了提高。(4)适当的Ca掺杂HZSM-5催化剂上较轻的芳香碳在积炭中的占比较大。通过引入阳离子调节分子筛催化剂的酸性是优化该类催化剂催化脱水反应的有效手段。基于此,本研究通过掺杂Ca阳离子优化了HZSM-5分子筛催化MTO反应的性能。由于Ca掺杂,降低了催化剂的酸性从而抑制了质子转移反应并显著降低了催化剂酸位点上齐聚反应的进行进而抑制芳烃循环路径低碳烯烃的生成。适当数量的Ca掺杂,由于最弱的空间位阻效应,暴露出更多易接触Lewis酸位点使得该催化剂具有良好的活性和较高的低碳烯烃选择性。在研究的温度范围内,Ca掺杂HZSM-5催化剂催化MTO反应的能垒降低。同时Ca掺杂可适当降低积炭的生成速率,长时间进行催化反应仍会导致积炭的生成。  相似文献   

14.
晶粒大小对ZSM-5分子筛甲醇制低碳烯烃催化性能的影响   总被引:2,自引:0,他引:2  
对三种HZSM-5分子筛进行Ca改性,获得两组酸性接近的催化剂,考察了晶粒大小对甲醇制低碳烯烃(MTO)反应的影响。通过进一步与Na改性的比较,探讨了Ca在催化反应中的作用。采用扫描电镜(SEM)测定晶粒大小及形貌,氨气程序升温脱附(NH3-TPD)及吡啶红外吸附(Py-IR)表征催化剂的酸性。MTO催化性能测定结果表明,HZSM-5的低碳烯烃选择性较低且下降较快,催化活性降低也快;Ca改性降低酸性,提高了低碳烯烃选择性和催化稳定性;晶粒大小主要影响催化稳定性,小晶粒分子筛催化剂稳定性更好。高Ca含量改性效果更好;钠改性也提高了低碳烯烃选择性,但其稳定性较差。对于HZSM-5和Ca/HZSM-5,小晶粒的催化剂具有较好的催化稳定性。提出Ca参与了催化反应,MTO是一个酸碱协同作用的催化过程。  相似文献   

15.
沸石在甲醇转化为烃过程中积炭性能的考察   总被引:1,自引:0,他引:1  
用热重法(TGA)和程序升温脱附法(TPD)考察了几种不同孔道结构的沸石——毛沸石(HE),类毛—菱钾沸石(HSW),Fu-1,ZSM-5,ZSM-11,丝光沸石(HM)和Y 型沸石——在甲醇转化为烃时的积炭行为。认为甲醇在沸石上转化为烃时的积炭倾向不仅与沸石的孔道结构有关,而且也与其强酸部位(即TPD 谱的峰Ⅱ)的酸量有着密切关系。甲醇在所考察过的七种沸石上的积炭初速度有着如下排列顺序:HE>(HSW,HY)>HM>(HF,HZSM-5,HZSM-11);其除炭初速度的大小有着与积炭初速度一致的顺序。采用往ZSM-5沸石上添加磷或镁等化合物以改质的方法,可以调节沸石的酸性和孔道尺寸,使得沸石的抗积炭能力增强,有利于改善沸石催化剂的稳定性和选择性。甲醇在改质沸石催化剂上转化为烃时的积炭初速度有着下列顺序,Zn ZSM-5》HZSM-5>Mg ZSM-5>PZSM-5>MnZSM-5。  相似文献   

16.
我们采用浸渍法制备了γ-Al2O3负载的Cu-Fe基催化剂,并结合其反应性能和XRD、H2-TPR和XPS等表征结果研究了其催化合成气直接制低碳烯烃的反应行为.结果表明,合成气直接制低碳烯烃Cu-Fe基催化剂的活性组分Cu和Fe之间存在明显的协同效应,Cu-Fe基催化剂表现出优异的合成气直接制低碳烯烃反应性能;Cu基催化剂中引入少量Fe组分明显提高了活性组分Cu的分散度,促进了Cu活性组分的还原,进而有利于催化剂反应性能的改进.初步推断Cu-Fe基催化剂上合成气转化生成低碳烯烃的主要反应历程为CO加氢生成含氧化合物(醇醚等)后再脱水生成低碳烯烃.  相似文献   

17.
生物乙醇近年来得到蓬勃发展,由乙醇制备低碳烯烃得到广泛关注。本文综述了近年来在乙醇制低碳烯烃领域ZSM-5催化剂的研究进展,介绍了经过金属或磷改性后的催化剂能够改善催化剂的性能,表现为降低催化剂表面酸量,调节酸强度,抑制芳构化和氢转移反应的发生。与未改性分子筛催化剂相比,改性后的催化剂能够显著提高催化剂的活性和乙醇转化产物中低碳烯烃的选择性,同时延长了催化剂的使用寿命。讨论了影响反应的一些因素和该反应的可能机理;展望了催化剂在乙醇制低碳烯烃中的发展方向,指出由乙醇制低碳烯烃是传统石脑油裂解的一条可替代途径。  相似文献   

18.
在反应器体积为200ml的扩大试验装置上,以颗粒度φ2×4mm的改质高硅沸石为催化剂,对甲醇转化为低碳烯烃的反应进行了系统的工艺参数影响考察。认为采用较高反应温度和较低操作压力以及以水为稀释剂有利于低碳烯烃的生成。在550℃,WHSV(MeOH)1.5h~(-1)及常压的条件下,催化剂连续运转累计810小时以上,取得了C_2—C_4低碳烯烃和乙烯收率分别为88.6和31.9%的结果。  相似文献   

19.
经磷或镁改质的ZSM-5沸石的表面性质研究   总被引:7,自引:0,他引:7  
用TPD,IR,ESCA和TPSR等方法考察了经磷、镁改质前后的HZSM-5沸石的表面性质。磷改质导致该沸石上强与弱酸中心以及B酸与L酸中心同时减少,表相硅铝比增加,但并不引起XPS结合能和半高宽的变化。镁改质使该沸石的强酸中心趋于消失,在减少强B酸中心的同时,增加了弱L酸中心,并且表相硅铝比减少,XPS结合能下降与峰宽化。经磷或镁改质均有利于甲醇转化为低碳烯烃,其中部份乙烯来自二次裂解反应。  相似文献   

20.
甲醇在HZSM-5沸石上转化为烃类的红外光谱研究   总被引:3,自引:0,他引:3  
董庆年 《催化学报》1986,7(1):22-27
用红外光谱法考察了甲醇在HZSM-5沸石上转化为烃的过程。发现最初的重要中间物二甲醚主要是在非质子酸中心上脱水生成的。它转移到质子酸中心上进一步反应,通过生成类醚物增殖碳链,最后经聚合、裂解、脱水转化成各种烃类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号